Python FastAPI+Celery+RabbitMQ實現(xiàn)分布式圖片水印處理系統(tǒng)
實現(xiàn)思路
- FastAPI 服務器
- Celery 任務隊列
- RabbitMQ 作為消息代理
- 定時任務處理
完整步驟
首先創(chuàng)建項目結構:
c:\Users\Administrator\Desktop\meitu\
├── app/
│ ├── __init__.py
│ ├── main.py
│ ├── celery_app.py
│ ├── tasks.py
│ └── config.py
├── requirements.txt
└── celery_worker.py
1.首先創(chuàng)建 requirements.txt:
fastapi==0.104.1 uvicorn==0.24.0 celery==5.3.4 python-dotenv==1.0.0 requests==2.31.0
2.創(chuàng)建配置文件:
from dotenv import load_dotenv import os load_dotenv() # RabbitMQ配置 RABBITMQ_HOST = os.getenv("RABBITMQ_HOST", "localhost") RABBITMQ_PORT = os.getenv("RABBITMQ_PORT", "5672") RABBITMQ_USER = os.getenv("RABBITMQ_USER", "guest") RABBITMQ_PASS = os.getenv("RABBITMQ_PASS", "guest") # Celery配置 CELERY_BROKER_URL = f"amqp://{RABBITMQ_USER}:{RABBITMQ_PASS}@{RABBITMQ_HOST}:{RABBITMQ_PORT}//" CELERY_RESULT_BACKEND = "rpc://" # 定時任務配置 CELERY_BEAT_SCHEDULE = { 'process-images-every-hour': { 'task': 'app.tasks.process_images', 'schedule': 3600.0, # 每小時執(zhí)行一次 }, 'daily-cleanup': { 'task': 'app.tasks.cleanup_old_images', 'schedule': 86400.0, # 每天執(zhí)行一次 } }
3.創(chuàng)建 Celery 應用:
from celery import Celery from app.config import CELERY_BROKER_URL, CELERY_RESULT_BACKEND, CELERY_BEAT_SCHEDULE celery_app = Celery( 'image_processing', broker=CELERY_BROKER_URL, backend=CELERY_RESULT_BACKEND, include=['app.tasks'] ) # 配置定時任務 celery_app.conf.beat_schedule = CELERY_BEAT_SCHEDULE celery_app.conf.timezone = 'Asia/Shanghai'
4.創(chuàng)建任務文件:
from app.celery_app import celery_app from app.watermark import ImageWatermarker import os from datetime import datetime, timedelta @celery_app.task def add_watermark_task(image_path, text, position='center'): """異步添加水印任務""" watermarker = ImageWatermarker() try: result_path = watermarker.add_watermark( image_path=image_path, text=text, position=position ) return {"status": "success", "output_path": result_path} except Exception as e: return {"status": "error", "message": str(e)} @celery_app.task def process_images(): """定時處理圖片任務""" image_dir = "images/pending" if not os.path.exists(image_dir): return {"status": "error", "message": "Pending directory not found"} processed = 0 for image in os.listdir(image_dir): if image.lower().endswith(('.png', '.jpg', '.jpeg')): add_watermark_task.delay( os.path.join(image_dir, image), "自動處理水印", 'center' ) processed += 1 return {"status": "success", "processed": processed} @celery_app.task def cleanup_old_images(): """清理舊圖片任務""" output_dir = "images/processed" if not os.path.exists(output_dir): return {"status": "error", "message": "Output directory not found"} threshold_date = datetime.now() - timedelta(days=7) cleaned = 0 for image in os.listdir(output_dir): image_path = os.path.join(output_dir, image) if os.path.getctime(image_path) < threshold_date.timestamp(): os.remove(image_path) cleaned += 1 return {"status": "success", "cleaned": cleaned}
5.創(chuàng)建 FastAPI 應用:
from fastapi import FastAPI, File, UploadFile, BackgroundTasks from fastapi.responses import JSONResponse import os from app.tasks import add_watermark_task from app.celery_app import celery_app app = FastAPI(title="圖片水印處理服務") @app.post("/upload/") async def upload_image( file: UploadFile = File(...), text: str = "水印文本", position: str = "center" ): # 保存上傳的文件 file_path = f"images/uploads/{file.filename}" os.makedirs(os.path.dirname(file_path), exist_ok=True) with open(file_path, "wb") as buffer: content = await file.read() buffer.write(content) # 創(chuàng)建異步任務 task = add_watermark_task.delay(file_path, text, position) return JSONResponse({ "status": "success", "message": "圖片已上傳并加入處理隊列", "task_id": task.id }) @app.get("/task/{task_id}") async def get_task_status(task_id: str): task = celery_app.AsyncResult(task_id) if task.ready(): return {"status": "completed", "result": task.result} return {"status": "processing"} @app.get("/tasks/scheduled") async def get_scheduled_tasks(): return {"tasks": celery_app.conf.beat_schedule}
6.創(chuàng)建 Celery worker 啟動文件:
from app.celery_app import celery_app if __name__ == '__main__': celery_app.start()
使用說明
首先安裝依賴:
pip install -r requirements.txt
確保 RabbitMQ 服務已啟動
啟動 FastAPI 服務器:
uvicorn app.main:app --reload
啟動 Celery worker:
celery -A celery_worker.celery_app worker --loglevel=info
啟動 Celery beat(定時任務):
celery -A celery_worker.celery_app beat --loglevel=info
這個系統(tǒng)提供以下功能:
- 通過 FastAPI 接口上傳圖片并異步處理水印
- 使用 Celery 處理異步任務隊列
- 使用 RabbitMQ 作為消息代理
- 支持定時任務:
- 每小時自動處理待處理圖片
- 每天清理一周前的舊圖片
- 支持任務狀態(tài)查詢
- 支持查看計劃任務列表
API 端點:
- POST /upload/ - 上傳圖片并創(chuàng)建水印任務
- GET /task/{task_id} - 查詢?nèi)蝿諣顟B(tài)
- GET /tasks/scheduled - 查看計劃任務列表
以上就是Python FastAPI+Celery+RabbitMQ實現(xiàn)分布式圖片水印處理系統(tǒng)的詳細內(nèi)容,更多關于Python圖片水印的資料請關注腳本之家其它相關文章!
相關文章
python實現(xiàn)微秒級等待問題(windows)
這篇文章主要介紹了python實現(xiàn)微秒級等待問題(windows),具有很好的參考價值,希望對大家有所幫助,如有錯誤或未考慮完全的地方,望不吝賜教2024-06-06Python使用Matplotlib模塊時坐標軸標題中文及各種特殊符號顯示方法
這篇文章主要介紹了Python使用Matplotlib模塊時坐標軸標題中文及各種特殊符號顯示方法,結合具體實例分析了Python使用Matplotlib模塊過程中針對中文及特殊符號的顯示方法,需要的朋友可以參考下2018-05-05