Python實現數據庫表的監(jiān)控警告的項目實踐
簡介
使用Python 實現對數據庫表的監(jiān)控告警功能, 并將告警信息通過釘釘機器人發(fā)送到釘釘群
實現DataWorks中數據質量的基本功能, 當然 DW的數據質量的規(guī)則類型很多, 用起來比較方便, 這里只簡單實現了其中兩個規(guī)則類型的功能, 僅供參考;
初次使用Python, 請多指教
使用工具: MaxCompute
1. 創(chuàng)建表
1. tmp_monitor_tbl_info
CREATE TABLE IF NOT EXISTS puture_bigdata.tmp_monitor_tbl_info ( `id` STRING COMMENT '表編號id' , `tbl_name` STRING COMMENT '表名' , `pt_format` STRING COMMENT '分區(qū)格式: yyyy-MM-dd,yyyyMMdd 等' , `val_type` STRING COMMENT '值類型: 表行數,周期值等' , `monitor_flag` int COMMENT '監(jiān)控標識: 0:不監(jiān)控, 1:監(jiān)控;' , `rule_code` int COMMENT '規(guī)則編碼: 1:表行數,上周期差值, 2:表行數,固定值 等' , `rule_type` STRING COMMENT '規(guī)則類型: 表行數,上周期差值; 表行數,固定值; 與固定值比較 等' , `expect_val` int COMMENT '期望值' , `tbl_sort_code` int COMMENT '表類型編碼: 0:其它(維表類), 1:亞馬遜, 2:中小平臺, 3:市場數據 等' , `tbl_sort_name` STRING COMMENT '表類型名字: 0:其它(維表類), 1:亞馬遜, 2:中小平臺, 3:市場數據 等' , `pt_num` INT COMMENT '分區(qū)日期差值' ) COMMENT '數據監(jiān)控表信息' tblproperties ("transactional"="true") ;
-- 插入數據 INSERT INTO TABLE puture_bigdata_dev.tmp_monitor_tbl_info SELECT * FROM ( VALUES (1 , 'ods_amazon_amz_customer_returns_df', 'yyyyMMdd', '表行數', 1, 1, '表行數,上周期差值', 0, 1, '亞馬遜' , -1) , (2 , 'ods_amazon_amz_flat_file_all_orders_df', 'yyyyMMdd', '表行數', 1, 1, '表行數,上周期差值', 0, 1, '亞馬遜' , -1) , (3 , 'dim_sys_salesman_info_df', 'yyyyMMdd', '表行數', 1, 1, '表行數,上周期差值', 0, 0, '其它' , -1) ) AS table_name(id, tbl_name, pt_format, val_type, monitor_flag, rule_code, rule_type, expect_val, tbl_sort_code, tbl_sort_name, pt_num) ;
2. tmp_monitor_tbl_info_log_di
CREATE TABLE IF NOT EXISTS puture_bigdata_dev.tmp_monitor_tbl_info_log_di ( `id` STRING COMMENT '監(jiān)控id編碼:md5(表名_分區(qū))_小時' , `tbl_name` STRING COMMENT '表名' , `stat_time` STRING COMMENT '統(tǒng)計時間' , `pt_format` STRING COMMENT '分區(qū)格式: yyyy-MM-dd,yyyyMMdd 等' , `stat_pt` STRING COMMENT '統(tǒng)計分區(qū)' , `val_type` STRING COMMENT '值類型: 表行數,周期值等' , `val` int COMMENT '統(tǒng)計值' , `rule_code` int COMMENT '規(guī)則編碼: 1:表行數,上周期差值, 2:表行數,固定值 等' , `rule_type` STRING COMMENT '規(guī)則類型: 表行數,上周期差值; 表行數,固定值; 與固定值比較 等' , `expect_val` int COMMENT '期望值' , `is_exc` int COMMENT '是否異常: 0:否,1:是,默認值0' , `tbl_sort_code` int COMMENT '表類型編碼: 0:其它(維表類), 1:亞馬遜, 2:中小平臺, 3:市場數據 等' , `tbl_sort_name` STRING COMMENT '表類型名字: 0:其它(維表類), 1:亞馬遜, 2:中小平臺, 3:市場數據 等' ) COMMENT '數據監(jiān)控信息記錄表' PARTITIONED BY (pt STRING COMMENT '數據日期, yyyy-MM-dd') ;
2. 程序開發(fā)
1. 數據檢查程序
'''PyODPS 3 請確保不要使用從 MaxCompute下載數據來處理。下載數據操作常包括Table/Instance的open_reader以及 DataFrame的to_pandas方法。 推薦使用 PyODPS DataFrame(從 MaxCompute 表創(chuàng)建)和MaxCompute SQL來處理數據。 更詳細的內容可以參考:https://help.aliyun.com/document_detail/90481.html ''' import os from odps import ODPS, DataFrame from datetime import datetime, timedelta from dateutil import parser options.tunnel.use_instance_tunnel = True # 獲取當前時間 now_time = datetime.now().strftime('%Y-%m-%d %H:%M:%S') print(now_time) pt = args['date'] print(pt) date = datetime.strptime(pt, "%Y-%m-%d") # 監(jiān)控表列表 tbl_sort_code -> 0:其它(維表類), 1:亞馬遜, 2:中小平臺, 3:市場數據 sql_tbl_info = """ SELECT * FROM puture_bigdata.tmp_monitor_tbl_info WHERE monitor_flag = 1 AND tbl_sort_code = 3 """ # 結果表 res_tbl_name = "puture_bigdata.tmp_monitor_tbl_info_log_di" # 統(tǒng)計sql代碼 -- 表行數,上周期差值 def sql_upper_period_diff(): sql = f""" set odps.sql.hive.compatible=true ; INSERT INTO TABLE {res_tbl_name} PARTITION (pt='{pt}') SELECT a.id , a.tbl_name , a.stat_time , a.pt_format , a.stat_pt , a.val_type , a.val , a.rule_code , a.rule_type , a.expect_val , IF (a.val = 0, 1, (IF ((a.val - NVL(b.val,0)) >= {expect_val}, 0, 1 ))) AS is_exc , a.tbl_sort_code , a.tbl_sort_name FROM ( SELECT concat( md5(concat('{tbl_name}', '_', date_format('{date_str}' ,'{pt_format}')) ), '_', {rule_code}, '_', HOUR('{now_time}') ) AS id , '{tbl_name}' AS tbl_name , '{now_time}' AS stat_time , '{pt_format}' AS pt_format , date_format('{date_str}' ,'{pt_format}') AS stat_pt , '{val_type}' AS val_type , COUNT(1) AS val , '{rule_code}' AS rule_code , '{rule_type}' AS rule_type , {expect_val} AS expect_val , {tbl_sort_code} AS tbl_sort_code , '{tbl_sort_name}' AS tbl_sort_name FROM puture_bigdata.{tbl_name} WHERE pt = date_format('{date_str}' ,'{pt_format}') ) a LEFT JOIN ( SELECT tbl_name, val FROM ( SELECT tbl_name, val , ROW_NUMBER() OVER(PARTITION BY tbl_name ORDER BY stat_time DESC ) AS rn FROM {res_tbl_name} WHERE pt = DATE_ADD('{date_str}', -1) ) WHERE rn = 1 ) b ON a.tbl_name = b.tbl_name ; """ return sql # 表行數, 固定值 def sql_line_fixed_val(): sql = f""" set odps.sql.hive.compatible=true ; INSERT INTO TABLE {res_tbl_name} PARTITION (pt='{pt}') SELECT concat( md5(concat('{tbl_name}', '_', date_format('{date_str}' ,'{pt_format}')) ), '_', {rule_code}, '_', HOUR('{now_time}') ) AS id , '{tbl_name}' AS tbl_name , '{now_time}' AS stat_time , '{pt_format}' AS pt_format , date_format('{date_str}' ,'{pt_format}') AS stat_pt , '{val_type}' AS val_type , COUNT(1) AS val , '{rule_code}' AS rule_code , '{rule_type}' AS rule_type , {expect_val} AS expect_val , IF (COUNT(1) >= {expect_val}, 0, 1 ) AS is_exc , {tbl_sort_code} AS tbl_sort_code , '{tbl_sort_name}' AS tbl_sort_name FROM puture_bigdata.{tbl_name} WHERE pt = date_format('{date_str}' ,'{pt_format}') ; """ return sql # 執(zhí)行監(jiān)控統(tǒng)計代碼 def ex_monitor(sql: str): try : # print (sql) o.execute_sql(sql, hints={'odps.sql.hive.compatible': True , "odps.sql.submit.mode":"script"}) print("{}: 運行成功".format(tbl_name) ) except Exception as e: print('{}: 運行異常 ======> '.format(tbl_name) + str(e)) if __name__ == '__main__': try : with o.execute_sql(sql_tbl_info, hints={'odps.sql.hive.compatible': True}).open_reader() as reader: for row_record in reader: # print(row_record) # 打印一條數據值 tbl_name = row_record.tbl_name pt_format = row_record.pt_format val_type = row_record.val_type monitor_flag = row_record.monitor_flag rule_code = row_record.rule_code rule_type = row_record.rule_type expect_val = row_record.expect_val tbl_sort_code = row_record.tbl_sort_code tbl_sort_name = row_record.tbl_sort_name pt_num = row_record.pt_num date_str = (date + timedelta(days=pt_num)).strftime('%Y-%m-%d') if rule_code == 1 : ex_monitor(sql_upper_period_diff()) elif rule_code == 2 : ex_monitor(sql_line_fixed_val()) else : print("未知規(guī)則!!!") except Exception as e: print('異常 ======> ' + str(e))
2. 告警信息推送程序
'''PyODPS 3 請確保不要使用從 MaxCompute下載數據來處理。下載數據操作常包括Table/Instance的open_reader以及 DataFrame的to_pandas方法。 推薦使用 PyODPS DataFrame(從 MaxCompute 表創(chuàng)建)和MaxCompute SQL來處理數據。 更詳細的內容可以參考:https://help.aliyun.com/document_detail/90481.html ''' import json import requests from datetime import datetime import os from odps import ODPS, DataFrame date_str = args['date'] # 接口地址和token信息 url = 'https://oapi.dingtalk.com/robot/send?access_token=***********************' now_time = datetime.now().strftime('%Y-%m-%d %H:%M:%S') print (now_time) sql_query = f""" SELECT tbl_name, stat_time, stat_pt, val_type, val, rule_type, expect_val, is_exc FROM ( SELECT tbl_name, stat_time, stat_pt, val_type, val, rule_type, expect_val, is_exc , ROW_NUMBER() OVER(PARTITION BY tbl_name ORDER BY stat_time DESC) AS rn FROM puture_bigdata_dev.tmp_monitor_tbl_info_log_di WHERE pt = '{date_str}' AND tbl_sort_code = 1 -- 表種類 ) a WHERE rn = 1 AND is_exc = 1 """ # 釘釘機器人,發(fā)送消息 def dd_robot(url:str, content: str): HEADERS = {"Content-Type": "application/json;charset=utf-8"} #content里面要設置關鍵字 data_info = { "msgtype": "text", "text": { "content": content }, "isAtAll": False #這是配置需要@的人 # ,"at": {"atMobiles": ["15xxxxxx06",'18xxxxxx1']} } value = json.dumps(data_info) response = requests.post(url,data=value,headers=HEADERS) if response.json()['errmsg']!='ok': print(response.text) # 主函數 if __name__ == '__main__': # py3可以省略 try : with o.execute_sql(sql_query, hints={'odps.sql.hive.compatible': True}).open_reader() as reader: result_rows = list(reader) # 讀取所有的結果行 result_count = len(result_rows) # 獲取結果條數 #print("結果條數:", result_count) # 打印結果條數 if result_count > 0 : for row in result_rows: tbl_name = row.tbl_name stat_time = row.stat_time stat_pt = row.stat_pt val_type = row.val_type val = row.val rule_type = row.rule_type expect_val = row.expect_val #print (tbl_name) content = "數據質量(DQC)校驗告警 \n " content = content + "【對象名稱】:" + tbl_name + " \n " content = content + "【實際分區(qū)】:pt=" + stat_pt + " \n " content = content + "【觸發(fā)規(guī)則】: " + rule_type + " | 當前樣本值: " + val + " | 閾值: " + expect_val + " \n " content = content + now_time + " \n " dd_robot(url, content) else : print ("無異常情況;") except Exception as e: print ('異常 ========>' + str(e) )
3. 告警樣例
數據質量(DQC)校驗告警
【對象名稱】:dws_amazon_market_sales_stat_di
【實際分區(qū)】:pt=20240103
【觸發(fā)規(guī)則】: 表行數,固定值 | 當前樣本值: 617 | 閾值: 650
2024-01-04 02:54:44
到此這篇關于Python實現數據庫表的監(jiān)控警告的項目實踐的文章就介紹到這了,更多相關Python 數據庫表監(jiān)控警告內容請搜索腳本之家以前的文章或繼續(xù)瀏覽下面的相關文章希望大家以后多多支持腳本之家!