亚洲乱码中文字幕综合,中国熟女仑乱hd,亚洲精品乱拍国产一区二区三区,一本大道卡一卡二卡三乱码全集资源,又粗又黄又硬又爽的免费视频

pytorch中的named_parameters()和parameters()

 更新時(shí)間:2023年09月12日 08:57:16   作者:Hanawh  
這篇文章主要介紹了pytorch中的named_parameters()和parameters()使用方式,具有很好的參考價(jià)值,希望對大家有所幫助,如有錯(cuò)誤或未考慮完全的地方,望不吝賜教

pytorch named_parameters()和parameters()

nn.Module

nn.Module里面關(guān)于參數(shù)有兩個(gè)很重要的屬性named_parameters()和parameters(),前者給出網(wǎng)絡(luò)層的名字和參數(shù)的迭代器,而后者僅僅是參數(shù)的迭代器。

import torchvision.models as models
model = models.resnet18()
for param in model.named_parameters():
    print(param[0])
'''
conv1.weight
bn1.weight
bn1.bias
layer1.0.conv1.weight
layer1.0.bn1.weight
layer1.0.bn1.bias
layer1.0.conv2.weight
layer1.0.bn2.weight
layer1.0.bn2.bias
layer1.1.conv1.weight
layer1.1.bn1.weight
layer1.1.bn1.bias
layer1.1.conv2.weight
layer1.1.bn2.weight
layer1.1.bn2.bias
layer2.0.conv1.weight
layer2.0.bn1.weight
layer2.0.bn1.bias
layer2.0.conv2.weight
layer2.0.bn2.weight
layer2.0.bn2.bias
layer2.0.downsample.0.weight
layer2.0.downsample.1.weight
layer2.0.downsample.1.bias
layer2.1.conv1.weight
layer2.1.bn1.weight
layer2.1.bn1.bias
layer2.1.conv2.weight
layer2.1.bn2.weight
layer2.1.bn2.bias
layer3.0.conv1.weight
layer3.0.bn1.weight
layer3.0.bn1.bias
layer3.0.conv2.weight
layer3.0.bn2.weight
layer3.0.bn2.bias
layer3.0.downsample.0.weight
layer3.0.downsample.1.weight
layer3.0.downsample.1.bias
layer3.1.conv1.weight
layer3.1.bn1.weight
layer3.1.bn1.bias
layer3.1.conv2.weight
layer3.1.bn2.weight
layer3.1.bn2.bias
layer4.0.conv1.weight
layer4.0.bn1.weight
layer4.0.bn1.bias
layer4.0.conv2.weight
layer4.0.bn2.weight
layer4.0.bn2.bias
layer4.0.downsample.0.weight
layer4.0.downsample.1.weight
layer4.0.downsample.1.bias
layer4.1.conv1.weight
layer4.1.bn1.weight
layer4.1.bn1.bias
layer4.1.conv2.weight
layer4.1.bn2.weight
layer4.1.bn2.bias
fc.weight
fc.bias
'''

模型參數(shù):named_parameters()、parameters()、state_dict()區(qū)別

torch中存在3個(gè)功能極其類似的方法,它們分別是model.parameters()、model.named_parameters()、model.state_dict(),

下面就具體來說說這三個(gè)函數(shù)的差異:

一、model.parameters()和model.named_parameters()差別

  • named_parameters()返回的list中,每個(gè)元組(與list相似,只是數(shù)據(jù)不可修改)打包了2個(gè)內(nèi)容,分別是layer-namelayer-param(網(wǎng)絡(luò)層的名字和參數(shù)的迭代器);
  • parameters()只有后者layer-param(參數(shù)的迭代器)

1、model.named_parameters()里的網(wǎng)絡(luò)層名字

import torchvision.models as models
model = models.resnet18()
for param_tuple in model.named_parameters():
    name, param = param_tuple
    print("name = ", name)
    print("-" * 100)

打印結(jié)果:

name =  conv1.weight
----------------------------------------------------------------------------------------------------
name =  bn1.weight
----------------------------------------------------------------------------------------------------
name =  bn1.bias
----------------------------------------------------------------------------------------------------
name =  layer1.0.conv1.weight
----------------------------------------------------------------------------------------------------
name =  layer1.0.bn1.weight
----------------------------------------------------------------------------------------------------
name =  layer1.0.bn1.bias
----------------------------------------------------------------------------------------------------
name =  layer1.0.conv2.weight
----------------------------------------------------------------------------------------------------
name =  layer1.0.bn2.weight
----------------------------------------------------------------------------------------------------
name =  layer1.0.bn2.bias
----------------------------------------------------------------------------------------------------
name =  layer1.1.conv1.weight
----------------------------------------------------------------------------------------------------
name =  layer1.1.bn1.weight
----------------------------------------------------------------------------------------------------
name =  layer1.1.bn1.bias
----------------------------------------------------------------------------------------------------
name =  layer1.1.conv2.weight
----------------------------------------------------------------------------------------------------
name =  layer1.1.bn2.weight
----------------------------------------------------------------------------------------------------
name =  layer1.1.bn2.bias
----------------------------------------------------------------------------------------------------
name =  layer2.0.conv1.weight
----------------------------------------------------------------------------------------------------
name =  layer2.0.bn1.weight
----------------------------------------------------------------------------------------------------
name =  layer2.0.bn1.bias
----------------------------------------------------------------------------------------------------
name =  layer2.0.conv2.weight
----------------------------------------------------------------------------------------------------
name =  layer2.0.bn2.weight
----------------------------------------------------------------------------------------------------
name =  layer2.0.bn2.bias
----------------------------------------------------------------------------------------------------
name =  layer2.0.downsample.0.weight
----------------------------------------------------------------------------------------------------
name =  layer2.0.downsample.1.weight
----------------------------------------------------------------------------------------------------
name =  layer2.0.downsample.1.bias
----------------------------------------------------------------------------------------------------
name =  layer2.1.conv1.weight
----------------------------------------------------------------------------------------------------
name =  layer2.1.bn1.weight
----------------------------------------------------------------------------------------------------
name =  layer2.1.bn1.bias
----------------------------------------------------------------------------------------------------
name =  layer2.1.conv2.weight
----------------------------------------------------------------------------------------------------
name =  layer2.1.bn2.weight
----------------------------------------------------------------------------------------------------
name =  layer2.1.bn2.bias
----------------------------------------------------------------------------------------------------
name =  layer3.0.conv1.weight
----------------------------------------------------------------------------------------------------
name =  layer3.0.bn1.weight
----------------------------------------------------------------------------------------------------
name =  layer3.0.bn1.bias
----------------------------------------------------------------------------------------------------
name =  layer3.0.conv2.weight
----------------------------------------------------------------------------------------------------
name =  layer3.0.bn2.weight
----------------------------------------------------------------------------------------------------
name =  layer3.0.bn2.bias
----------------------------------------------------------------------------------------------------
name =  layer3.0.downsample.0.weight
----------------------------------------------------------------------------------------------------
name =  layer3.0.downsample.1.weight
----------------------------------------------------------------------------------------------------
name =  layer3.0.downsample.1.bias
----------------------------------------------------------------------------------------------------
name =  layer3.1.conv1.weight
----------------------------------------------------------------------------------------------------
name =  layer3.1.bn1.weight
----------------------------------------------------------------------------------------------------
name =  layer3.1.bn1.bias
----------------------------------------------------------------------------------------------------
name =  layer3.1.conv2.weight
----------------------------------------------------------------------------------------------------
name =  layer3.1.bn2.weight
----------------------------------------------------------------------------------------------------
name =  layer3.1.bn2.bias
----------------------------------------------------------------------------------------------------
name =  layer4.0.conv1.weight
----------------------------------------------------------------------------------------------------
name =  layer4.0.bn1.weight
----------------------------------------------------------------------------------------------------
name =  layer4.0.bn1.bias
----------------------------------------------------------------------------------------------------
name =  layer4.0.conv2.weight
----------------------------------------------------------------------------------------------------
name =  layer4.0.bn2.weight
----------------------------------------------------------------------------------------------------
name =  layer4.0.bn2.bias
----------------------------------------------------------------------------------------------------
name =  layer4.0.downsample.0.weight
----------------------------------------------------------------------------------------------------
name =  layer4.0.downsample.1.weight
----------------------------------------------------------------------------------------------------
name =  layer4.0.downsample.1.bias
----------------------------------------------------------------------------------------------------
name =  layer4.1.conv1.weight
----------------------------------------------------------------------------------------------------
name =  layer4.1.bn1.weight
----------------------------------------------------------------------------------------------------
name =  layer4.1.bn1.bias
----------------------------------------------------------------------------------------------------
name =  layer4.1.conv2.weight
----------------------------------------------------------------------------------------------------
name =  layer4.1.bn2.weight
----------------------------------------------------------------------------------------------------
name =  layer4.1.bn2.bias
----------------------------------------------------------------------------------------------------
name =  fc.weight
----------------------------------------------------------------------------------------------------
name =  fc.bias
----------------------------------------------------------------------------------------------------

Process finished with exit code 0

2、model.named_parameters()里的網(wǎng)絡(luò)層名字、參數(shù)

import torchvision.models as models
model = models.resnet18()
for param_tuple in model.named_parameters():
    name, param = param_tuple
    print("name = ", name)
    print("-" * 100)
    print("param_tuple = ", param_tuple)
    print("*" * 200)

打印結(jié)果:

C:\Program_Files_AI\Anaconda3531\python.exe C:/Users/Admin/OneDrive/WorkSpace_AI/0-基于知識庫的智能問答系統(tǒng)-華控智加/01-意圖識別/test.py
name =  conv1.weight
----------------------------------------------------------------------------------------------------
param_tuple =  ('conv1.weight', Parameter containing:
tensor([[[[-1.4115e-05,  2.9187e-02,  2.9325e-03,  ..., -4.2247e-02,
            1.7490e-02, -4.5253e-02],
          [-2.4594e-02, -3.0836e-02,  3.8604e-02,  ...,  3.5473e-02,
           -4.7046e-03, -2.9440e-02],
          [ 2.4811e-02,  1.2679e-02,  1.0070e-02,  ..., -8.3476e-03,
            1.7960e-02, -1.7406e-02],
          ...,
          [-1.3021e-02,  2.9023e-02, -6.1800e-02,  ..., -5.2802e-02,
           -4.7817e-02, -2.2377e-02],
          [-3.8513e-03, -1.0603e-02, -3.9712e-02,  ...,  5.1941e-03,
            8.2868e-03, -8.3469e-03],
          [ 3.8993e-03,  3.2017e-02, -3.6292e-02,  ..., -2.0210e-02,
           -4.0358e-02,  1.7709e-02]],

         [[-1.0894e-03,  1.5720e-02,  7.0129e-03,  ..., -1.2024e-02,
            1.8644e-02,  1.7892e-02],
          [-2.3866e-02,  9.1136e-03,  3.5243e-02,  ..., -1.6756e-02,
            1.4441e-03,  4.7943e-02],
          [-2.0514e-03,  4.3022e-02,  2.6358e-02,  ..., -2.3662e-02,
           -7.8241e-04,  1.0167e-02],
        ...

         [[-4.6689e-02, -1.1407e-03,  1.8674e-02,  ...,  1.2649e-03,
           -2.9532e-02,  6.4535e-04],
          [ 1.4171e-03, -1.9274e-02, -8.6811e-03,  ...,  2.4428e-02,
            6.9516e-03,  4.3715e-02],
          [ 1.9982e-02,  1.3124e-02,  9.1508e-03,  ...,  2.5405e-02,
           -1.3132e-02,  4.0835e-02],
          ...,
          [-3.4174e-03,  1.8623e-02, -1.4386e-02,  ...,  1.0627e-03,
           -5.1297e-04,  2.2055e-02],
          [ 2.7333e-02,  2.4858e-02, -5.4305e-02,  ..., -1.2139e-02,
            1.7735e-03, -3.4184e-03],
          [ 1.1412e-03,  1.5794e-02, -2.0699e-02,  ..., -1.7846e-02,
            3.7425e-02, -1.6059e-02]]],


        ...,


        [[[-2.7389e-02, -3.8327e-02, -2.9043e-02,  ..., -7.6396e-03,
           -1.6519e-02,  3.9659e-02],
          [ 2.8740e-03, -1.0621e-02, -9.2430e-03,  ...,  2.2581e-02,
            5.1526e-03, -2.0006e-02],
          [ 1.3575e-02,  1.5290e-02, -1.7260e-02,  ...,  6.3830e-03,
           -1.9759e-02,  1.5501e-02],
          ...,
          [ 1.6091e-02,  2.4038e-02,  2.4507e-02,  ..., -4.5613e-02,
           -3.6233e-02,  2.1632e-02],
          [-1.1573e-02, -3.6514e-02,  4.1576e-02,  ...,  1.8090e-02,
           -2.3350e-02, -8.7074e-03],
          [-1.5837e-02, -3.1353e-02,  1.8726e-02,  ...,  9.3698e-03,
            3.0781e-02,  1.0976e-02]],

         [[-2.7063e-02,  8.7158e-03,  2.7193e-03,  ..., -1.6670e-03,
           -4.3033e-03,  7.2011e-04],
          [ 2.7870e-03,  1.4264e-02, -5.0581e-02,  ...,  2.5463e-02,
            7.6864e-03, -4.9655e-02],
          [ 2.6030e-03,  2.5918e-02,  2.9615e-02,  ...,  3.0676e-02,
           -2.7723e-02, -7.3628e-03],
          ...,
          [ 2.5969e-02, -1.4247e-02,  1.2516e-02,  ...,  5.9602e-03,
           -3.2843e-02,  3.5822e-02],
          [ 1.2845e-02, -2.0035e-02,  9.9398e-04,  ..., -3.1800e-02,
            5.7984e-03,  2.8756e-02],
          [ 2.3458e-02,  3.8193e-02, -2.3754e-03,  ..., -1.3867e-02,
            8.0831e-03, -3.2438e-02]],
...

         [[-9.9291e-03, -5.6023e-03, -1.7064e-02,  ...,  8.8544e-03,
           -5.8145e-03,  2.3248e-02],
          [ 1.2148e-02, -1.0730e-02, -1.2682e-02,  ...,  9.4389e-03,
            1.2149e-02,  3.8613e-03],
          [ 3.5913e-02, -5.2048e-04, -8.7133e-02,  ..., -2.0969e-03,
           -5.4117e-03,  5.4637e-05],
          ...,
          [ 4.0351e-03, -1.3189e-02,  3.1229e-02,  ...,  3.2340e-02,
           -2.8351e-02,  1.0634e-02],
          [ 2.6041e-02, -3.0633e-04, -1.2732e-02,  ...,  2.9417e-02,
           -7.3859e-03,  1.7207e-02],
          [ 6.9960e-04,  3.8486e-03,  1.0397e-02,  ...,  1.4535e-03,
           -3.6449e-02,  3.4848e-02]]]], requires_grad=True))
********************************************************************************************************************************************************************************************************
name =  bn1.weight
----------------------------------------------------------------------------------------------------
param_tuple =  ('bn1.weight', Parameter containing:
tensor([1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1.,
        1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1.,
        1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1.,
        1., 1., 1., 1., 1., 1., 1., 1., 1., 1.], requires_grad=True))
********************************************************************************************************************************************************************************************************
name =  bn1.bias
----------------------------------------------------------------------------------------------------
param_tuple =  ('bn1.bias', Parameter containing:
tensor([0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
        0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
        0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.],
       requires_grad=True))
********************************************************************************************************************************************************************************************************

********************************************************************************************************************************************************************************************************
name =  layer1.0.conv2.weight
----------------------------------------------------------------------------------------------------
param_tuple =  ('layer1.0.conv2.weight', Parameter containing:
tensor([[[[-8.6159e-02,  1.8507e-04,  5.4006e-03],
          [-6.3063e-03,  3.9225e-03, -6.3141e-02],
          [-7.0145e-02, -3.9266e-02,  1.9724e-03]],

         [[ 4.6454e-02,  2.1519e-02,  5.3696e-02],
          [ 1.1086e-02,  1.6269e-01, -7.0579e-02],
          [-1.1220e-01, -4.9811e-02, -7.5515e-02]],

         [[ 5.5275e-02, -8.2407e-02, -8.9807e-02],
          [ 5.8418e-02,  4.4029e-02,  3.0584e-03],
          [ 5.2371e-02, -1.5983e-02,  5.1494e-02]],

         ...,

         [[ 7.3441e-02,  4.5401e-02, -1.9175e-02],
          [-6.2500e-02, -8.5905e-03, -7.4856e-02],
          [-1.6170e-02,  3.7529e-02, -5.1231e-02]],

         [[ 7.7501e-04, -5.7506e-02,  1.8422e-01],
          [ 2.4594e-02,  1.7378e-02,  4.0000e-02],
          [-8.6796e-02, -6.0548e-02,  2.6795e-02]],

         [[ 5.3264e-02, -8.6190e-02,  4.2443e-02],
          [-6.8029e-03, -1.6581e-02,  7.8568e-02],
          [ 3.2037e-02, -7.3002e-02,  4.9353e-02]]]], requires_grad=True))
...,
********************************************************************************************************************************************************************************************************
name =  layer4.1.bn2.bias
----------------------------------------------------------------------------------------------------
param_tuple =  ('layer4.1.bn2.bias', Parameter containing:
tensor([0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
        0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
        0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
        0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
...,
        0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
        0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
        0., 0., 0., 0., 0., 0., 0., 0.], requires_grad=True))
********************************************************************************************************************************************************************************************************
name =  fc.weight
----------------------------------------------------------------------------------------------------
param_tuple =  ('fc.weight', Parameter containing:
tensor([[-0.0125,  0.0437, -0.0014,  ..., -0.0230,  0.0280,  0.0249],
        [-0.0105,  0.0242,  0.0291,  ...,  0.0153,  0.0366, -0.0236],
        [-0.0315,  0.0306, -0.0216,  ...,  0.0387,  0.0403,  0.0056],
        ...,
        [-0.0068, -0.0222, -0.0027,  ..., -0.0243,  0.0260,  0.0065],
        [ 0.0213,  0.0167, -0.0379,  ..., -0.0140,  0.0037, -0.0372],
        [ 0.0180,  0.0101, -0.0341,  ..., -0.0295, -0.0146,  0.0416]],
       requires_grad=True))
********************************************************************************************************************************************************************************************************
name =  fc.bias
----------------------------------------------------------------------------------------------------
param_tuple =  ('fc.bias', Parameter containing:
tensor([ 3.5711e-02,  3.2682e-02,  7.5932e-03, -3.1623e-02, -9.6316e-03,
        -2.4051e-02, -1.0393e-02,  2.3210e-02, -3.6044e-02,  2.3099e-02,
        -3.5723e-02, -3.9482e-02,  4.8526e-03, -3.2688e-02,  3.7720e-03,
        -2.2014e-02, -4.0935e-02,  4.0533e-02, -4.1172e-02,  3.9513e-02,
        -3.0332e-02,  3.2777e-02,  1.3342e-02,  2.3394e-02,  8.2328e-03,
         1.3757e-02, -1.7578e-02, -2.7165e-02,  3.8495e-03, -3.2116e-02,
         7.9903e-03,  9.9640e-04, -8.3106e-03,  2.5033e-02, -3.0446e-02,
        -1.8282e-02, -3.8420e-03, -8.6129e-03, -4.2712e-03,  1.7169e-02,
       ...,
        -5.3570e-05, -3.7353e-02, -9.8633e-03, -9.1069e-03,  3.2688e-02,
         2.2457e-02,  7.6379e-03, -3.6287e-02, -1.0444e-02,  2.1669e-02,
         2.5270e-02, -4.3881e-02,  2.1960e-02,  2.6293e-02, -3.5049e-02,
        -2.0074e-02, -9.7686e-03, -2.3766e-02, -5.0265e-03, -2.1095e-02,
         2.0981e-02, -3.5132e-02,  8.6407e-03,  1.8453e-02,  2.4282e-02,
         3.8392e-02, -1.7470e-02,  3.6958e-02, -3.7590e-02, -4.1951e-02,
        -1.8246e-02,  9.0818e-03,  3.8774e-02,  7.3408e-03,  1.7728e-02,
         3.5547e-02, -7.2857e-03, -2.7015e-02, -8.6983e-03, -2.3785e-02],
       requires_grad=True))
********************************************************************************************************************************************************************************************************

Process finished with exit code 0

二、model.named_parameters()和model.state_dict()差別

它們的差異主要體現(xiàn)在3方面:

  • 返回值類型不同
  • 存儲的模型參數(shù)的種類不同
  • 返回的值的require_grad屬性不同
named_parameters()state_dict()
將layer_name : layer_param的鍵值信息打包成一個(gè)元祖然后再存到list當(dāng)中將layer_name : layer_param的鍵值信息存儲為dict形式
只保存可學(xué)習(xí)、可被更新的參數(shù),model.buffer()中的參數(shù)不包含在model.named_parameters()中存儲的是該model中包含的所有l(wèi)ayer中的所有參數(shù)
require_grad屬性都是True存儲的模型參數(shù)tensor的require_grad屬性都是False

為何model.parameters()迭代出來的所有參數(shù)的require_grad屬性都是True,因?yàn)樗鼈冊诒粍?chuàng)建時(shí),默認(rèn)的require_grad就是True。

這也符合邏輯,即,使用nn.Parameter()創(chuàng)建的變量是模型參數(shù),本就是要參與學(xué)習(xí)和更新的

總結(jié)

以上為個(gè)人經(jīng)驗(yàn),希望能給大家一個(gè)參考,也希望大家多多支持腳本之家。

相關(guān)文章

  • Python返回?cái)?shù)組/List長度的實(shí)例

    Python返回?cái)?shù)組/List長度的實(shí)例

    今天小編就為大家分享一篇Python返回?cái)?shù)組/List長度的實(shí)例,具有很好的參考價(jià)值,希望對大家有所幫助。一起跟隨小編過來看看吧
    2018-06-06
  • 利用Python實(shí)現(xiàn)快捷操作文件和文件夾

    利用Python實(shí)現(xiàn)快捷操作文件和文件夾

    shutil是Python標(biāo)準(zhǔn)庫中的一個(gè)模塊,提供了許多用于文件和文件夾操作的高級接口,本文主要詳細(xì)介紹了Python如何使用shutil實(shí)現(xiàn)快捷操作文件和文件夾,需要的可以參考下
    2024-02-02
  • python畫折線圖的程序

    python畫折線圖的程序

    這篇文章主要為大家詳細(xì)介紹了python畫折線圖的方法,一個(gè)畫折線圖的程序具有一定的參考價(jià)值,感興趣的小伙伴們可以參考一下
    2018-07-07
  • Python matplotlib圖例放在外側(cè)保存時(shí)顯示不完整問題解決

    Python matplotlib圖例放在外側(cè)保存時(shí)顯示不完整問題解決

    這篇文章主要介紹了Python matplotlib圖例放在外側(cè)保存時(shí)顯示不完整問題解決,文中通過示例代碼介紹的非常詳細(xì),對大家的學(xué)習(xí)或者工作具有一定的參考學(xué)習(xí)價(jià)值,需要的朋友們下面隨著小編來一起學(xué)習(xí)學(xué)習(xí)吧
    2020-07-07
  • Python使用PIL進(jìn)行JPEG圖像壓縮的簡易教程

    Python使用PIL進(jìn)行JPEG圖像壓縮的簡易教程

    本文介紹了如何使用Python編程語言和wxPython圖形用戶界面庫進(jìn)行JPEG圖像的壓縮,通過添加滑塊控件,我們可以調(diào)整壓縮質(zhì)量,并將壓縮后的照片另存為原來的名稱加上后綴"壓縮+質(zhì)量數(shù)字"的新文件,需要的朋友可以參考下
    2023-09-09
  • Python執(zhí)行時(shí)間計(jì)算方法以及優(yōu)化總結(jié)

    Python執(zhí)行時(shí)間計(jì)算方法以及優(yōu)化總結(jié)

    python腳本運(yùn)行時(shí)間遠(yuǎn)遠(yuǎn)大于python腳本中統(tǒng)計(jì)的計(jì)算時(shí)間,所以本文將為大家分享就幾個(gè)Python執(zhí)行時(shí)間計(jì)算方法以及優(yōu)化,感興趣的可以了解一下
    2022-08-08
  • Python中海象運(yùn)算符:=的實(shí)現(xiàn)

    Python中海象運(yùn)算符:=的實(shí)現(xiàn)

    海象運(yùn)算符(:=)是Python3.8引入的新特性,用于在表達(dá)式中同時(shí)完成賦值和返回值操作,本文就來介紹一下Python中海象運(yùn)算符:=的實(shí)現(xiàn),感興趣的可以了解一下
    2025-02-02
  • python3反轉(zhuǎn)字符串的3種方法(小結(jié))

    python3反轉(zhuǎn)字符串的3種方法(小結(jié))

    這篇文章主要介紹了python3反轉(zhuǎn)字符串的3種方法(小結(jié)),文中通過示例代碼介紹的非常詳細(xì),對大家的學(xué)習(xí)或者工作具有一定的參考學(xué)習(xí)價(jià)值,需要的朋友們下面隨著小編來一起學(xué)習(xí)學(xué)習(xí)吧
    2019-11-11
  • python np.arange 步長0.1的問題需要特別注意

    python np.arange 步長0.1的問題需要特別注意

    這篇文章主要介紹了python np.arange 步長0.1的問題需要特別注意,具有很好的參考價(jià)值,希望對大家有所幫助。如有錯(cuò)誤或未考慮完全的地方,望不吝賜教
    2022-05-05
  • python中提高pip install速度

    python中提高pip install速度

    本文給大家分享了如何提高pip install速度的方法,其實(shí)就是將默認(rèn)源替換為國內(nèi)高速的源,非常的簡單實(shí)用,有需要的小伙伴可以參考下
    2020-02-02

最新評論