pytorch中的named_parameters()和parameters()
pytorch named_parameters()和parameters()
nn.Module
nn.Module里面關于參數(shù)有兩個很重要的屬性named_parameters()和parameters(),前者給出網(wǎng)絡層的名字和參數(shù)的迭代器,而后者僅僅是參數(shù)的迭代器。
import torchvision.models as models
model = models.resnet18()
for param in model.named_parameters():
print(param[0])
'''
conv1.weight
bn1.weight
bn1.bias
layer1.0.conv1.weight
layer1.0.bn1.weight
layer1.0.bn1.bias
layer1.0.conv2.weight
layer1.0.bn2.weight
layer1.0.bn2.bias
layer1.1.conv1.weight
layer1.1.bn1.weight
layer1.1.bn1.bias
layer1.1.conv2.weight
layer1.1.bn2.weight
layer1.1.bn2.bias
layer2.0.conv1.weight
layer2.0.bn1.weight
layer2.0.bn1.bias
layer2.0.conv2.weight
layer2.0.bn2.weight
layer2.0.bn2.bias
layer2.0.downsample.0.weight
layer2.0.downsample.1.weight
layer2.0.downsample.1.bias
layer2.1.conv1.weight
layer2.1.bn1.weight
layer2.1.bn1.bias
layer2.1.conv2.weight
layer2.1.bn2.weight
layer2.1.bn2.bias
layer3.0.conv1.weight
layer3.0.bn1.weight
layer3.0.bn1.bias
layer3.0.conv2.weight
layer3.0.bn2.weight
layer3.0.bn2.bias
layer3.0.downsample.0.weight
layer3.0.downsample.1.weight
layer3.0.downsample.1.bias
layer3.1.conv1.weight
layer3.1.bn1.weight
layer3.1.bn1.bias
layer3.1.conv2.weight
layer3.1.bn2.weight
layer3.1.bn2.bias
layer4.0.conv1.weight
layer4.0.bn1.weight
layer4.0.bn1.bias
layer4.0.conv2.weight
layer4.0.bn2.weight
layer4.0.bn2.bias
layer4.0.downsample.0.weight
layer4.0.downsample.1.weight
layer4.0.downsample.1.bias
layer4.1.conv1.weight
layer4.1.bn1.weight
layer4.1.bn1.bias
layer4.1.conv2.weight
layer4.1.bn2.weight
layer4.1.bn2.bias
fc.weight
fc.bias
'''模型參數(shù):named_parameters()、parameters()、state_dict()區(qū)別
torch中存在3個功能極其類似的方法,它們分別是model.parameters()、model.named_parameters()、model.state_dict(),
下面就具體來說說這三個函數(shù)的差異:
一、model.parameters()和model.named_parameters()差別
- named_parameters()返回的list中,每個元組(與list相似,只是數(shù)據(jù)不可修改)打包了2個內(nèi)容,分別是
layer-name和layer-param(網(wǎng)絡層的名字和參數(shù)的迭代器); - parameters()只有后者layer-param(參數(shù)的迭代器)
1、model.named_parameters()里的網(wǎng)絡層名字
import torchvision.models as models
model = models.resnet18()
for param_tuple in model.named_parameters():
name, param = param_tuple
print("name = ", name)
print("-" * 100)打印結(jié)果:
name = conv1.weight
----------------------------------------------------------------------------------------------------
name = bn1.weight
----------------------------------------------------------------------------------------------------
name = bn1.bias
----------------------------------------------------------------------------------------------------
name = layer1.0.conv1.weight
----------------------------------------------------------------------------------------------------
name = layer1.0.bn1.weight
----------------------------------------------------------------------------------------------------
name = layer1.0.bn1.bias
----------------------------------------------------------------------------------------------------
name = layer1.0.conv2.weight
----------------------------------------------------------------------------------------------------
name = layer1.0.bn2.weight
----------------------------------------------------------------------------------------------------
name = layer1.0.bn2.bias
----------------------------------------------------------------------------------------------------
name = layer1.1.conv1.weight
----------------------------------------------------------------------------------------------------
name = layer1.1.bn1.weight
----------------------------------------------------------------------------------------------------
name = layer1.1.bn1.bias
----------------------------------------------------------------------------------------------------
name = layer1.1.conv2.weight
----------------------------------------------------------------------------------------------------
name = layer1.1.bn2.weight
----------------------------------------------------------------------------------------------------
name = layer1.1.bn2.bias
----------------------------------------------------------------------------------------------------
name = layer2.0.conv1.weight
----------------------------------------------------------------------------------------------------
name = layer2.0.bn1.weight
----------------------------------------------------------------------------------------------------
name = layer2.0.bn1.bias
----------------------------------------------------------------------------------------------------
name = layer2.0.conv2.weight
----------------------------------------------------------------------------------------------------
name = layer2.0.bn2.weight
----------------------------------------------------------------------------------------------------
name = layer2.0.bn2.bias
----------------------------------------------------------------------------------------------------
name = layer2.0.downsample.0.weight
----------------------------------------------------------------------------------------------------
name = layer2.0.downsample.1.weight
----------------------------------------------------------------------------------------------------
name = layer2.0.downsample.1.bias
----------------------------------------------------------------------------------------------------
name = layer2.1.conv1.weight
----------------------------------------------------------------------------------------------------
name = layer2.1.bn1.weight
----------------------------------------------------------------------------------------------------
name = layer2.1.bn1.bias
----------------------------------------------------------------------------------------------------
name = layer2.1.conv2.weight
----------------------------------------------------------------------------------------------------
name = layer2.1.bn2.weight
----------------------------------------------------------------------------------------------------
name = layer2.1.bn2.bias
----------------------------------------------------------------------------------------------------
name = layer3.0.conv1.weight
----------------------------------------------------------------------------------------------------
name = layer3.0.bn1.weight
----------------------------------------------------------------------------------------------------
name = layer3.0.bn1.bias
----------------------------------------------------------------------------------------------------
name = layer3.0.conv2.weight
----------------------------------------------------------------------------------------------------
name = layer3.0.bn2.weight
----------------------------------------------------------------------------------------------------
name = layer3.0.bn2.bias
----------------------------------------------------------------------------------------------------
name = layer3.0.downsample.0.weight
----------------------------------------------------------------------------------------------------
name = layer3.0.downsample.1.weight
----------------------------------------------------------------------------------------------------
name = layer3.0.downsample.1.bias
----------------------------------------------------------------------------------------------------
name = layer3.1.conv1.weight
----------------------------------------------------------------------------------------------------
name = layer3.1.bn1.weight
----------------------------------------------------------------------------------------------------
name = layer3.1.bn1.bias
----------------------------------------------------------------------------------------------------
name = layer3.1.conv2.weight
----------------------------------------------------------------------------------------------------
name = layer3.1.bn2.weight
----------------------------------------------------------------------------------------------------
name = layer3.1.bn2.bias
----------------------------------------------------------------------------------------------------
name = layer4.0.conv1.weight
----------------------------------------------------------------------------------------------------
name = layer4.0.bn1.weight
----------------------------------------------------------------------------------------------------
name = layer4.0.bn1.bias
----------------------------------------------------------------------------------------------------
name = layer4.0.conv2.weight
----------------------------------------------------------------------------------------------------
name = layer4.0.bn2.weight
----------------------------------------------------------------------------------------------------
name = layer4.0.bn2.bias
----------------------------------------------------------------------------------------------------
name = layer4.0.downsample.0.weight
----------------------------------------------------------------------------------------------------
name = layer4.0.downsample.1.weight
----------------------------------------------------------------------------------------------------
name = layer4.0.downsample.1.bias
----------------------------------------------------------------------------------------------------
name = layer4.1.conv1.weight
----------------------------------------------------------------------------------------------------
name = layer4.1.bn1.weight
----------------------------------------------------------------------------------------------------
name = layer4.1.bn1.bias
----------------------------------------------------------------------------------------------------
name = layer4.1.conv2.weight
----------------------------------------------------------------------------------------------------
name = layer4.1.bn2.weight
----------------------------------------------------------------------------------------------------
name = layer4.1.bn2.bias
----------------------------------------------------------------------------------------------------
name = fc.weight
----------------------------------------------------------------------------------------------------
name = fc.bias
----------------------------------------------------------------------------------------------------Process finished with exit code 0
2、model.named_parameters()里的網(wǎng)絡層名字、參數(shù)
import torchvision.models as models
model = models.resnet18()
for param_tuple in model.named_parameters():
name, param = param_tuple
print("name = ", name)
print("-" * 100)
print("param_tuple = ", param_tuple)
print("*" * 200)打印結(jié)果:
C:\Program_Files_AI\Anaconda3531\python.exe C:/Users/Admin/OneDrive/WorkSpace_AI/0-基于知識庫的智能問答系統(tǒng)-華控智加/01-意圖識別/test.py
name = conv1.weight
----------------------------------------------------------------------------------------------------
param_tuple = ('conv1.weight', Parameter containing:
tensor([[[[-1.4115e-05, 2.9187e-02, 2.9325e-03, ..., -4.2247e-02,
1.7490e-02, -4.5253e-02],
[-2.4594e-02, -3.0836e-02, 3.8604e-02, ..., 3.5473e-02,
-4.7046e-03, -2.9440e-02],
[ 2.4811e-02, 1.2679e-02, 1.0070e-02, ..., -8.3476e-03,
1.7960e-02, -1.7406e-02],
...,
[-1.3021e-02, 2.9023e-02, -6.1800e-02, ..., -5.2802e-02,
-4.7817e-02, -2.2377e-02],
[-3.8513e-03, -1.0603e-02, -3.9712e-02, ..., 5.1941e-03,
8.2868e-03, -8.3469e-03],
[ 3.8993e-03, 3.2017e-02, -3.6292e-02, ..., -2.0210e-02,
-4.0358e-02, 1.7709e-02]],[[-1.0894e-03, 1.5720e-02, 7.0129e-03, ..., -1.2024e-02,
1.8644e-02, 1.7892e-02],
[-2.3866e-02, 9.1136e-03, 3.5243e-02, ..., -1.6756e-02,
1.4441e-03, 4.7943e-02],
[-2.0514e-03, 4.3022e-02, 2.6358e-02, ..., -2.3662e-02,
-7.8241e-04, 1.0167e-02],
...[[-4.6689e-02, -1.1407e-03, 1.8674e-02, ..., 1.2649e-03,
-2.9532e-02, 6.4535e-04],
[ 1.4171e-03, -1.9274e-02, -8.6811e-03, ..., 2.4428e-02,
6.9516e-03, 4.3715e-02],
[ 1.9982e-02, 1.3124e-02, 9.1508e-03, ..., 2.5405e-02,
-1.3132e-02, 4.0835e-02],
...,
[-3.4174e-03, 1.8623e-02, -1.4386e-02, ..., 1.0627e-03,
-5.1297e-04, 2.2055e-02],
[ 2.7333e-02, 2.4858e-02, -5.4305e-02, ..., -1.2139e-02,
1.7735e-03, -3.4184e-03],
[ 1.1412e-03, 1.5794e-02, -2.0699e-02, ..., -1.7846e-02,
3.7425e-02, -1.6059e-02]]],
...,
[[[-2.7389e-02, -3.8327e-02, -2.9043e-02, ..., -7.6396e-03,
-1.6519e-02, 3.9659e-02],
[ 2.8740e-03, -1.0621e-02, -9.2430e-03, ..., 2.2581e-02,
5.1526e-03, -2.0006e-02],
[ 1.3575e-02, 1.5290e-02, -1.7260e-02, ..., 6.3830e-03,
-1.9759e-02, 1.5501e-02],
...,
[ 1.6091e-02, 2.4038e-02, 2.4507e-02, ..., -4.5613e-02,
-3.6233e-02, 2.1632e-02],
[-1.1573e-02, -3.6514e-02, 4.1576e-02, ..., 1.8090e-02,
-2.3350e-02, -8.7074e-03],
[-1.5837e-02, -3.1353e-02, 1.8726e-02, ..., 9.3698e-03,
3.0781e-02, 1.0976e-02]],[[-2.7063e-02, 8.7158e-03, 2.7193e-03, ..., -1.6670e-03,
-4.3033e-03, 7.2011e-04],
[ 2.7870e-03, 1.4264e-02, -5.0581e-02, ..., 2.5463e-02,
7.6864e-03, -4.9655e-02],
[ 2.6030e-03, 2.5918e-02, 2.9615e-02, ..., 3.0676e-02,
-2.7723e-02, -7.3628e-03],
...,
[ 2.5969e-02, -1.4247e-02, 1.2516e-02, ..., 5.9602e-03,
-3.2843e-02, 3.5822e-02],
[ 1.2845e-02, -2.0035e-02, 9.9398e-04, ..., -3.1800e-02,
5.7984e-03, 2.8756e-02],
[ 2.3458e-02, 3.8193e-02, -2.3754e-03, ..., -1.3867e-02,
8.0831e-03, -3.2438e-02]],
...[[-9.9291e-03, -5.6023e-03, -1.7064e-02, ..., 8.8544e-03,
-5.8145e-03, 2.3248e-02],
[ 1.2148e-02, -1.0730e-02, -1.2682e-02, ..., 9.4389e-03,
1.2149e-02, 3.8613e-03],
[ 3.5913e-02, -5.2048e-04, -8.7133e-02, ..., -2.0969e-03,
-5.4117e-03, 5.4637e-05],
...,
[ 4.0351e-03, -1.3189e-02, 3.1229e-02, ..., 3.2340e-02,
-2.8351e-02, 1.0634e-02],
[ 2.6041e-02, -3.0633e-04, -1.2732e-02, ..., 2.9417e-02,
-7.3859e-03, 1.7207e-02],
[ 6.9960e-04, 3.8486e-03, 1.0397e-02, ..., 1.4535e-03,
-3.6449e-02, 3.4848e-02]]]], requires_grad=True))
********************************************************************************************************************************************************************************************************
name = bn1.weight
----------------------------------------------------------------------------------------------------
param_tuple = ('bn1.weight', Parameter containing:
tensor([1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1.,
1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1.,
1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1.,
1., 1., 1., 1., 1., 1., 1., 1., 1., 1.], requires_grad=True))
********************************************************************************************************************************************************************************************************
name = bn1.bias
----------------------------------------------------------------------------------------------------
param_tuple = ('bn1.bias', Parameter containing:
tensor([0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.],
requires_grad=True))
****************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************
name = layer1.0.conv2.weight
----------------------------------------------------------------------------------------------------
param_tuple = ('layer1.0.conv2.weight', Parameter containing:
tensor([[[[-8.6159e-02, 1.8507e-04, 5.4006e-03],
[-6.3063e-03, 3.9225e-03, -6.3141e-02],
[-7.0145e-02, -3.9266e-02, 1.9724e-03]],[[ 4.6454e-02, 2.1519e-02, 5.3696e-02],
[ 1.1086e-02, 1.6269e-01, -7.0579e-02],
[-1.1220e-01, -4.9811e-02, -7.5515e-02]],[[ 5.5275e-02, -8.2407e-02, -8.9807e-02],
[ 5.8418e-02, 4.4029e-02, 3.0584e-03],
[ 5.2371e-02, -1.5983e-02, 5.1494e-02]],...,
[[ 7.3441e-02, 4.5401e-02, -1.9175e-02],
[-6.2500e-02, -8.5905e-03, -7.4856e-02],
[-1.6170e-02, 3.7529e-02, -5.1231e-02]],[[ 7.7501e-04, -5.7506e-02, 1.8422e-01],
[ 2.4594e-02, 1.7378e-02, 4.0000e-02],
[-8.6796e-02, -6.0548e-02, 2.6795e-02]],[[ 5.3264e-02, -8.6190e-02, 4.2443e-02],
[-6.8029e-03, -1.6581e-02, 7.8568e-02],
[ 3.2037e-02, -7.3002e-02, 4.9353e-02]]]], requires_grad=True))
...,
********************************************************************************************************************************************************************************************************
name = layer4.1.bn2.bias
----------------------------------------------------------------------------------------------------
param_tuple = ('layer4.1.bn2.bias', Parameter containing:
tensor([0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
...,
0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
0., 0., 0., 0., 0., 0., 0., 0.], requires_grad=True))
********************************************************************************************************************************************************************************************************
name = fc.weight
----------------------------------------------------------------------------------------------------
param_tuple = ('fc.weight', Parameter containing:
tensor([[-0.0125, 0.0437, -0.0014, ..., -0.0230, 0.0280, 0.0249],
[-0.0105, 0.0242, 0.0291, ..., 0.0153, 0.0366, -0.0236],
[-0.0315, 0.0306, -0.0216, ..., 0.0387, 0.0403, 0.0056],
...,
[-0.0068, -0.0222, -0.0027, ..., -0.0243, 0.0260, 0.0065],
[ 0.0213, 0.0167, -0.0379, ..., -0.0140, 0.0037, -0.0372],
[ 0.0180, 0.0101, -0.0341, ..., -0.0295, -0.0146, 0.0416]],
requires_grad=True))
********************************************************************************************************************************************************************************************************
name = fc.bias
----------------------------------------------------------------------------------------------------
param_tuple = ('fc.bias', Parameter containing:
tensor([ 3.5711e-02, 3.2682e-02, 7.5932e-03, -3.1623e-02, -9.6316e-03,
-2.4051e-02, -1.0393e-02, 2.3210e-02, -3.6044e-02, 2.3099e-02,
-3.5723e-02, -3.9482e-02, 4.8526e-03, -3.2688e-02, 3.7720e-03,
-2.2014e-02, -4.0935e-02, 4.0533e-02, -4.1172e-02, 3.9513e-02,
-3.0332e-02, 3.2777e-02, 1.3342e-02, 2.3394e-02, 8.2328e-03,
1.3757e-02, -1.7578e-02, -2.7165e-02, 3.8495e-03, -3.2116e-02,
7.9903e-03, 9.9640e-04, -8.3106e-03, 2.5033e-02, -3.0446e-02,
-1.8282e-02, -3.8420e-03, -8.6129e-03, -4.2712e-03, 1.7169e-02,
...,
-5.3570e-05, -3.7353e-02, -9.8633e-03, -9.1069e-03, 3.2688e-02,
2.2457e-02, 7.6379e-03, -3.6287e-02, -1.0444e-02, 2.1669e-02,
2.5270e-02, -4.3881e-02, 2.1960e-02, 2.6293e-02, -3.5049e-02,
-2.0074e-02, -9.7686e-03, -2.3766e-02, -5.0265e-03, -2.1095e-02,
2.0981e-02, -3.5132e-02, 8.6407e-03, 1.8453e-02, 2.4282e-02,
3.8392e-02, -1.7470e-02, 3.6958e-02, -3.7590e-02, -4.1951e-02,
-1.8246e-02, 9.0818e-03, 3.8774e-02, 7.3408e-03, 1.7728e-02,
3.5547e-02, -7.2857e-03, -2.7015e-02, -8.6983e-03, -2.3785e-02],
requires_grad=True))
********************************************************************************************************************************************************************************************************Process finished with exit code 0
二、model.named_parameters()和model.state_dict()差別
它們的差異主要體現(xiàn)在3方面:
- 返回值類型不同
- 存儲的模型參數(shù)的種類不同
- 返回的值的require_grad屬性不同
| named_parameters() | state_dict() |
|---|---|
| 將layer_name : layer_param的鍵值信息打包成一個元祖然后再存到list當中 | 將layer_name : layer_param的鍵值信息存儲為dict形式 |
| 只保存可學習、可被更新的參數(shù),model.buffer()中的參數(shù)不包含在model.named_parameters()中 | 存儲的是該model中包含的所有l(wèi)ayer中的所有參數(shù) |
| require_grad屬性都是True | 存儲的模型參數(shù)tensor的require_grad屬性都是False |
為何model.parameters()迭代出來的所有參數(shù)的require_grad屬性都是True,因為它們在被創(chuàng)建時,默認的require_grad就是True。
這也符合邏輯,即,使用nn.Parameter()創(chuàng)建的變量是模型參數(shù),本就是要參與學習和更新的
總結(jié)
以上為個人經(jīng)驗,希望能給大家一個參考,也希望大家多多支持腳本之家。
相關文章
Python matplotlib圖例放在外側(cè)保存時顯示不完整問題解決
這篇文章主要介紹了Python matplotlib圖例放在外側(cè)保存時顯示不完整問題解決,文中通過示例代碼介紹的非常詳細,對大家的學習或者工作具有一定的參考學習價值,需要的朋友們下面隨著小編來一起學習學習吧2020-07-07
Python執(zhí)行時間計算方法以及優(yōu)化總結(jié)
python腳本運行時間遠遠大于python腳本中統(tǒng)計的計算時間,所以本文將為大家分享就幾個Python執(zhí)行時間計算方法以及優(yōu)化,感興趣的可以了解一下2022-08-08
python3反轉(zhuǎn)字符串的3種方法(小結(jié))
這篇文章主要介紹了python3反轉(zhuǎn)字符串的3種方法(小結(jié)),文中通過示例代碼介紹的非常詳細,對大家的學習或者工作具有一定的參考學習價值,需要的朋友們下面隨著小編來一起學習學習吧2019-11-11
python np.arange 步長0.1的問題需要特別注意
這篇文章主要介紹了python np.arange 步長0.1的問題需要特別注意,具有很好的參考價值,希望對大家有所幫助。如有錯誤或未考慮完全的地方,望不吝賜教2022-05-05

