Pandas中迭代DataFrame行的方法總結(jié)
Python是進(jìn)行數(shù)據(jù)分析的一種很好的語(yǔ)言,主要是因?yàn)橐詳?shù)據(jù)為中心的Python包的奇妙生態(tài)系統(tǒng)。Pandas就是其中之一,它使導(dǎo)入和分析數(shù)據(jù)變得更加容易。
1. 使用Dataframe的index屬性
# import pandas package as pd import pandas as pd # Define a dictionary containing students data data = {'Name': ['Ankit', 'Amit', 'Aishwarya', 'Priyanka'], 'Age': [21, 19, 20, 18], 'Stream': ['Math', 'Commerce', 'Arts', 'Biology'], 'Percentage': [88, 92, 95, 70]} # Convert the dictionary into DataFrame df = pd.DataFrame(data, columns=['Name', 'Age', 'Stream', 'Percentage']) print("Given Dataframe :\n", df) print("\nIterating over rows using index attribute :\n") # iterate through each row and select # 'Name' and 'Stream' column respectively. for ind in df.index: print(df['Name'][ind], df['Stream'][ind])
輸出
Given Dataframe :
Name Age Stream Percentage
0 Ankit 21 Math 88
1 Amit 19 Commerce 92
2 Aishwarya 20 Arts 95
3 Priyanka 18 Biology 70
Iterating over rows using index attribute :
Ankit Math
Amit Commerce
Aishwarya Arts
Priyanka Biology
2. 使用DataFrame的loc
# import pandas package as pd import pandas as pd # Define a dictionary containing students data data = {'Name': ['Ankit', 'Amit', 'Aishwarya', 'Priyanka'], 'Age': [21, 19, 20, 18], 'Stream': ['Math', 'Commerce', 'Arts', 'Biology'], 'Percentage': [88, 92, 95, 70]} # Convert the dictionary into DataFrame df = pd.DataFrame(data, columns=['Name', 'Age', 'Stream', 'Percentage']) print("Given Dataframe :\n", df) print("\nIterating over rows using loc function :\n") # iterate through each row and select # 'Name' and 'Age' column respectively. for i in range(len(df)): print(df.loc[i, "Name"], df.loc[i, "Age"])
輸出
Given Dataframe :
Name Age Stream Percentage
0 Ankit 21 Math 88
1 Amit 19 Commerce 92
2 Aishwarya 20 Arts 95
3 Priyanka 18 Biology 70
Iterating over rows using loc function :
Ankit 21
Amit 19
Aishwarya 20
Priyanka 18
3. 使用DataFrame的iloc
# import pandas package as pd import pandas as pd # Define a dictionary containing students data data = {'Name': ['Ankit', 'Amit', 'Aishwarya', 'Priyanka'], 'Age': [21, 19, 20, 18], 'Stream': ['Math', 'Commerce', 'Arts', 'Biology'], 'Percentage': [88, 92, 95, 70]} # Convert the dictionary into DataFrame df = pd.DataFrame(data, columns=['Name', 'Age', 'Stream', 'Percentage']) print("Given Dataframe :\n", df) print("\nIterating over rows using iloc function :\n") # iterate through each row and select # 0th and 2nd index column respectively. for i in range(len(df)): print(df.iloc[i, 0], df.iloc[i, 2])
輸出
Given Dataframe :
Name Age Stream Percentage
0 Ankit 21 Math 88
1 Amit 19 Commerce 92
2 Aishwarya 20 Arts 95
3 Priyanka 18 Biology 70
Iterating over rows using iloc function :
Ankit Math
Amit Commerce
Aishwarya Arts
Priyanka Biology
4. 使用Dataframe的iterrows()
# import pandas package as pd import pandas as pd # Define a dictionary containing students data data = {'Name': ['Ankit', 'Amit', 'Aishwarya', 'Priyanka'], 'Age': [21, 19, 20, 18], 'Stream': ['Math', 'Commerce', 'Arts', 'Biology'], 'Percentage': [88, 92, 95, 70]} # Convert the dictionary into DataFrame df = pd.DataFrame(data, columns=['Name', 'Age', 'Stream', 'Percentage']) print("Given Dataframe :\n", df) print("\nIterating over rows using iterrows() method :\n") # iterate through each row and select # 'Name' and 'Age' column respectively. for index, row in df.iterrows(): print(row["Name"], row["Age"])
輸出
Given Dataframe :
Name Age Stream Percentage
0 Ankit 21 Math 88
1 Amit 19 Commerce 92
2 Aishwarya 20 Arts 95
3 Priyanka 18 Biology 70
Iterating over rows using iterrows() method :
Ankit 21
Amit 19
Aishwarya 20
Priyanka 18
5. 使用Dataframe的itertuples()
# import pandas package as pd import pandas as pd # Define a dictionary containing students data data = {'Name': ['Ankit', 'Amit', 'Aishwarya', 'Priyanka'], 'Age': [21, 19, 20, 18], 'Stream': ['Math', 'Commerce', 'Arts', 'Biology'], 'Percentage': [88, 92, 95, 70]} # Convert the dictionary into DataFrame df = pd.DataFrame(data, columns=['Name', 'Age', 'Stream', 'Percentage']) print("Given Dataframe :\n", df) print("\nIterating over rows using itertuples() method :\n") # iterate through each row and select # 'Name' and 'Percentage' column respectively. for row in df.itertuples(index=True, name='Pandas'): print(getattr(row, "Name"), getattr(row, "Percentage"))
輸出
Given Dataframe :
Name Age Stream Percentage
0 Ankit 21 Math 88
1 Amit 19 Commerce 92
2 Aishwarya 20 Arts 95
3 Priyanka 18 Biology 70
Iterating over rows using itertuples() method :
Ankit 88
Amit 92
Aishwarya 95
Priyanka 70
6. 使用DataFrame的apply()
# import pandas package as pd import pandas as pd # Define a dictionary containing students data data = {'Name': ['Ankit', 'Amit', 'Aishwarya', 'Priyanka'], 'Age': [21, 19, 20, 18], 'Stream': ['Math', 'Commerce', 'Arts', 'Biology'], 'Percentage': [88, 92, 95, 70]} # Convert the dictionary into DataFrame df = pd.DataFrame(data, columns=['Name', 'Age', 'Stream', 'Percentage'])print("Given Dataframe :\n", df) print("\nIterating over rows using apply function :\n") ???????# iterate through each row and concatenate # 'Name' and 'Percentage' column respectively. print(df.apply(lambda row: row["Name"] + " " + str(row["Percentage"]), axis=1))
輸出
Given Dataframe :
Name Age Stream Percentage
0 Ankit 21 Math 88
1 Amit 19 Commerce 92
2 Aishwarya 20 Arts 95
3 Priyanka 18 Biology 70
???????Iterating over rows using apply function :
0 Ankit 88
1 Amit 92
2 Aishwarya 95
3 Priyanka 70
dtype: object
以上就是Pandas中迭代DataFrame行的方法總結(jié)的詳細(xì)內(nèi)容,更多關(guān)于Pandas Dataframe迭代行的資料請(qǐng)關(guān)注腳本之家其它相關(guān)文章!
相關(guān)文章
python測(cè)試mysql寫(xiě)入性能完整實(shí)例
這篇文章主要介紹了python測(cè)試mysql寫(xiě)入性能完整實(shí)例,具有一定借鑒價(jià)值,需要的朋友可以參考下2018-01-01pandas 強(qiáng)制類型轉(zhuǎn)換 df.astype實(shí)例
這篇文章主要介紹了pandas 強(qiáng)制類型轉(zhuǎn)換 df.astype實(shí)例,具有很好的參考價(jià)值,希望對(duì)大家有所幫助。一起跟隨小編過(guò)來(lái)看看吧2020-04-04Python 實(shí)現(xiàn)將numpy中的nan和inf,nan替換成對(duì)應(yīng)的均值
這篇文章主要介紹了Python 實(shí)現(xiàn)將numpy中的nan和inf,nan替換成對(duì)應(yīng)的均值,具有很好的參考價(jià)值,希望對(duì)大家有所幫助。一起跟隨小編過(guò)來(lái)看看吧2020-06-06深入理解python Matplotlib庫(kù)的高級(jí)特性
Matplotlib是一款極其強(qiáng)大的Python數(shù)據(jù)可視化庫(kù),這篇文章中,我們將深入討論 Matplotlib 的一些高級(jí)特性,包括對(duì)象導(dǎo)向接口、自定義顏色映射和樣式、動(dòng)態(tài)圖形等,感興趣的小伙伴跟著小編一起來(lái)探討吧2023-07-07Python利用request庫(kù)實(shí)現(xiàn)翻譯接口
這篇文章主要為大家詳細(xì)介紹了Python如何利用request庫(kù)打造自己的翻譯接口,文中的示例代碼講解詳細(xì),感興趣的小伙伴可以跟隨小編一起學(xué)習(xí)一下2023-04-04Python利用psutil庫(kù)進(jìn)行監(jiān)控進(jìn)程和資源
psutil是Python系統(tǒng)和進(jìn)程工具庫(kù),它提供了一種跨平臺(tái)的方式來(lái)獲取系統(tǒng)信息、管理系統(tǒng)進(jìn)程、監(jiān)控系統(tǒng)性能、操作系統(tǒng)資源等,下面就跟隨小編一起來(lái)學(xué)習(xí)psutil庫(kù)的具體應(yīng)用吧2024-01-01