Python實現(xiàn)分段讀取和保存遙感數(shù)據(jù)
1 分段讀取數(shù)據(jù)

如圖所示,有三個這樣的數(shù)據(jù),且該數(shù)據(jù)為5600行6800列,我們可以分成10個批次分段讀取該TIF數(shù)據(jù),10個批次以此為0,560,1120,1680,2240,2800,3360,3920,4480,5040,5600。
代碼實現(xiàn):
import os
import numpy as np
from osgeo import gdal, gdalnumeric
def read_tif(filepath):
dataset = gdal.Open(filepath)
col = dataset.RasterXSize#圖像長度
row = dataset.RasterYSize#圖像寬度
geotrans = dataset.GetGeoTransform()#讀取仿射變換
proj = dataset.GetProjection()#讀取投影
data = dataset.ReadAsArray()#轉(zhuǎn)為numpy格式
data = data.astype(np.float32)
# a = data[0][0]
# data[data == a] = np.nan
data[data <= -3] = np.nan
return [col, row, geotrans, proj, data]
def read_tif02(file):
data = gdalnumeric.LoadFile(file)
data = data.astype(np.float32)
# a = data[0][0]
# data[data == a] = np.nan
data[data <= -3] = np.nan
return data
def get_all_file_name(ndvi_file):
list1=[]
if os.path.isdir(ndvi_file):
fileList = os.listdir(ndvi_file)
for f in fileList:
file_name= ndvi_file+"\\"+f
list1.append(file_name)
return list1
else:
return []
if __name__ == '__main__':
file_ndvi = r"D:\AAWORK\work\研究方向\研究方向01作物分類內(nèi)容\風(fēng)云數(shù)據(jù)\MERSI-II植被指數(shù)旬產(chǎn)品(250M)\NDVI主合成"
file_out = r"D:\AAWORK\work\2021NDVISUM.tif"
ndvi_file_list = get_all_file_name(file_ndvi)
col00, row00, geotrans00, proj00, data_00_ndvi = read_tif(ndvi_file_list[0])
data_01_ndvi = read_tif02(ndvi_file_list[1])
data_02_ndvi = read_tif02(ndvi_file_list[2])
list_row = [0,560,1120,1680,2240,2800,3360,3920,4480,5040,5600]
for index,i in enumerate(list_row):
if index <= len(list_row)-2:
print(list_row[index],list_row[index+1])
#分段進(jìn)行操作
# sum_list = get_section(list_row[index],list_row[index+1],col00,data_00_ndvi,data_01_ndvi,data_02_ndvi)
# 分段進(jìn)行保存
# save_section(sum_list, list_row[index], list_row[index+1], col00,data_00_ndvi,data_01_ndvi,data_02_ndvi)
2 實現(xiàn)分批讀取數(shù)據(jù)以及進(jìn)行計算
拿到開始的行和結(jié)束的行數(shù),進(jìn)行分批讀取數(shù)據(jù)并進(jìn)行計算,(這里求和求的是整數(shù),如有需要的話可以自己更改)代碼如下:
import os
import tensorflow as tf
import numpy as np
import pandas as pd
from osgeo import gdal, gdalnumeric
def get_sum_list(data_list):
list1 = []
for data in data_list:
sum = 0
for d in data:
if not np.isnan(d):
sum = sum+d
list1.append(int(sum))
return list1
def read_tif(filepath):
dataset = gdal.Open(filepath)
col = dataset.RasterXSize#圖像長度
row = dataset.RasterYSize#圖像寬度
geotrans = dataset.GetGeoTransform()#讀取仿射變換
proj = dataset.GetProjection()#讀取投影
data = dataset.ReadAsArray()#轉(zhuǎn)為numpy格式
data = data.astype(np.float32)
# a = data[0][0]
# data[data == a] = np.nan
data[data <= -3] = np.nan
return [col, row, geotrans, proj, data]
def read_tif02(file):
data = gdalnumeric.LoadFile(file)
data = data.astype(np.float32)
# a = data[0][0]
# data[data == a] = np.nan
data[data <= -3] = np.nan
return data
def get_all_file_name(ndvi_file):
list1=[]
if os.path.isdir(ndvi_file):
fileList = os.listdir(ndvi_file)
for f in fileList:
file_name= ndvi_file+"\\"+f
list1.append(file_name)
return list1
else:
return []
def get_nan_sum(ndvi_list):
"""
得到NAN數(shù)據(jù)的個數(shù)
:param ndvi_list:
:return:
"""
count = 0
for ndvi in ndvi_list:
if np.isnan(ndvi):
count = count+1
return count
def get_section(row0, row1, col1,data1,data2,data3):
"""
分段讀取數(shù)據(jù),讀取的數(shù)據(jù)進(jìn)行計算
:param row0:
:param row1:
:param col1:
:param data1:
:param data2:
:param data3:
:return:
"""
list1 = []
for i in range(row0, row1): # 行
for j in range(0, col1): # 列
ndvi_list = []
ndvi_list.append(data1[i][j])
ndvi_list.append(data2[i][j])
ndvi_list.append(data3[i][j])
if get_nan_sum(ndvi_list)>1:
pass
else:
list1.append(ndvi_list)
ndvi_list = None
sum_list = get_sum_list(list1)
list1 = None
return sum_list
if __name__ == '__main__':
file_ndvi = r"D:\AAWORK\work\研究方向\研究方向01作物分類內(nèi)容\風(fēng)云數(shù)據(jù)\MERSI-II植被指數(shù)旬產(chǎn)品(250M)\NDVI主合成"
file_out = r"D:\AAWORK\work\2021NDVISUM.tif"
ndvi_file_list = get_all_file_name(file_ndvi)
col00, row00, geotrans00, proj00, data_00_ndvi = read_tif(ndvi_file_list[0])
data_01_ndvi = read_tif02(ndvi_file_list[1])
data_02_ndvi = read_tif02(ndvi_file_list[2])
list_row = [0,560,1120,1680,2240,2800,3360,3920,4480,5040,5600]
for index,i in enumerate(list_row):
if index <= len(list_row)-2:
print(list_row[index],list_row[index+1])
#分段進(jìn)行操作
sum_list = get_section(list_row[index],list_row[index+1],col00,data_00_ndvi,data_01_ndvi,data_02_ndvi)
print(np.array(sum_list))
# 分段進(jìn)行保存
# save_section(sum_list, list_row[index], list_row[index+1], col00,data_00_ndvi,data_01_ndvi,data_02_ndvi)
3 實現(xiàn)分批保存成TIF文件(所有完整代碼)
在2中已經(jīng)得到了每一批的list結(jié)果,我們拿到list結(jié)果之后,可以進(jìn)行保存成tif文件。代碼如下:
import os
import numpy as np
from osgeo import gdal, gdalnumeric
def get_sum_list(data_list):
list1 = []
for data in data_list:
sum = 0
for d in data:
if not np.isnan(d):
sum = sum+d
list1.append(int(sum))
return list1
def read_tif(filepath):
dataset = gdal.Open(filepath)
col = dataset.RasterXSize#圖像長度
row = dataset.RasterYSize#圖像寬度
geotrans = dataset.GetGeoTransform()#讀取仿射變換
proj = dataset.GetProjection()#讀取投影
data = dataset.ReadAsArray()#轉(zhuǎn)為numpy格式
data = data.astype(np.float32)
# a = data[0][0]
# data[data == a] = np.nan
data[data <= -3] = np.nan
return [col, row, geotrans, proj, data]
def read_tif02(file):
data = gdalnumeric.LoadFile(file)
data = data.astype(np.float32)
# a = data[0][0]
# data[data == a] = np.nan
data[data <= -3] = np.nan
return data
def get_all_file_name(ndvi_file):
list1=[]
if os.path.isdir(ndvi_file):
fileList = os.listdir(ndvi_file)
for f in fileList:
file_name= ndvi_file+"\\"+f
list1.append(file_name)
return list1
else:
return []
def save_tif(data, file, output):
"""
保存成tif
:param data:
:param file:
:param output:
:return:
"""
ds = gdal.Open(file)
shape = data.shape
driver = gdal.GetDriverByName("GTiff")
dataset = driver.Create(output, shape[1], shape[0], 1, gdal.GDT_Float32)#保存的數(shù)據(jù)類型
dataset.SetGeoTransform(ds.GetGeoTransform())
dataset.SetProjection(ds.GetProjection())
dataset.GetRasterBand(1).WriteArray(data)
def get_nan_sum(ndvi_list):
"""
得到NAN數(shù)據(jù)的個數(shù)
:param ndvi_list:
:return:
"""
count = 0
for ndvi in ndvi_list:
if np.isnan(ndvi):
count = count+1
return count
def get_section(row0, row1, col1,data1,data2,data3):
"""
分段讀取數(shù)據(jù),讀取的數(shù)據(jù)進(jìn)行計算
:param row0:
:param row1:
:param col1:
:param data1:
:param data2:
:param data3:
:return:
"""
list1 = []
for i in range(row0, row1): # 行
for j in range(0, col1): # 列
ndvi_list = []
ndvi_list.append(data1[i][j])
ndvi_list.append(data2[i][j])
ndvi_list.append(data3[i][j])
if get_nan_sum(ndvi_list)>1:
pass
else:
list1.append(ndvi_list)
ndvi_list = None
sum_list = get_sum_list(list1)
list1 = None
return sum_list
def save_section(sum_list, row0, row1, col1,data1,data2,data3):
"""
保存分段的數(shù)據(jù)
:param sum_list:
:param row0:
:param row1:
:param col1:
:param data1:
:param data2:
:param data3:
:return:
"""
file = r"D:\AAWORK\work\研究方向\研究方向01作物分類內(nèi)容\風(fēng)云數(shù)據(jù)\MERSI-II植被指數(shù)旬產(chǎn)品(250M)\kongbai_zhu_250m.tif"#這是一個空白數(shù)據(jù),每個像元的值為0
data = read_tif02(file)
m = 0
for i in range(row0, row1): # 行
for j in range(0, col1): # 列
ndvi_list = []
ndvi_list.append(data1[i][j])
ndvi_list.append(data2[i][j])
ndvi_list.append(data3[i][j])
if get_nan_sum(ndvi_list)>1:
pass
else:
data[i][j] = sum_list[m]
m = m + 1
save_tif(data,file,file_out.replace(".tif","_"+str(row0)+"_"+str(row1)+".tif"))
data = None
if __name__ == '__main__':
file_ndvi = r"D:\AAWORK\work\研究方向\研究方向01作物分類內(nèi)容\風(fēng)云數(shù)據(jù)\MERSI-II植被指數(shù)旬產(chǎn)品(250M)\NDVI主合成"
file_out = r"D:\AAWORK\work\2021NDVISUM.tif"
ndvi_file_list = get_all_file_name(file_ndvi)
col00, row00, geotrans00, proj00, data_00_ndvi = read_tif(ndvi_file_list[0])
data_01_ndvi = read_tif02(ndvi_file_list[1])
data_02_ndvi = read_tif02(ndvi_file_list[2])
list_row = [0,560,1120,1680,2240,2800,3360,3920,4480,5040,5600]
for index,i in enumerate(list_row):
if index <= len(list_row)-2:
print(list_row[index],list_row[index+1])
#分段進(jìn)行操作
sum_list = get_section(list_row[index],list_row[index+1],col00,data_00_ndvi,data_01_ndvi,data_02_ndvi)
print(np.array(sum_list))
# 分段進(jìn)行保存
save_section(sum_list, list_row[index], list_row[index+1], col00,data_00_ndvi,data_01_ndvi,data_02_ndvi)

4 分段TIF整合到一個TIF
我們要把上述10個TIF文件整合到一個TIF文件里,方法很多,我這里提供一個方法,供大家使用,代碼如下:
import os
from osgeo import gdalnumeric, gdal
import numpy as np
def get_all_file_name(file):
list1=[]
if os.path.isdir(file):
fileList = os.listdir(file)
for f in fileList:
file_name= file+"\\"+f
list1.append(file_name)
return list1
else:
return []
def read_tif(filepath):
dataset = gdal.Open(filepath)
col = dataset.RasterXSize#圖像長度
row = dataset.RasterYSize#圖像寬度
geotrans = dataset.GetGeoTransform()#讀取仿射變換
proj = dataset.GetProjection()#讀取投影
data = dataset.ReadAsArray()#轉(zhuǎn)為numpy格式
data = data.astype(np.float32)
# a = data[0][0]
# data[data == a] = np.nan
data[data <= -3] = np.nan
return [col, row, geotrans, proj, data]
def read_tif02(file):
data = gdalnumeric.LoadFile(file)
data = data.astype(np.float32)
# a = data[0][0]
# data[data == a] = np.nan
data[data <= -3] = np.nan
return data
def save_tif(data, file, output):
ds = gdal.Open(file)
shape = data.shape
driver = gdal.GetDriverByName("GTiff")
dataset = driver.Create(output, shape[1], shape[0], 1, gdal.GDT_Int16)#保存的數(shù)據(jù)類型
dataset.SetGeoTransform(ds.GetGeoTransform())
dataset.SetProjection(ds.GetProjection())
dataset.GetRasterBand(1).WriteArray(data)
if __name__ == '__main__':
file_path = r"D:\AAWORK\work\分段數(shù)據(jù)"
file_out = r"D:\AAWORK\work\2021NDVISUM.tif"
file_list = get_all_file_name(file_path)
data_all = read_tif02(r"D:\AAWORK\work\研究方向\研究方向01作物分類內(nèi)容\風(fēng)云數(shù)據(jù)\MERSI-II植被指數(shù)旬產(chǎn)品(250M)\kongbai_zhu_250m.tif")
for file in file_list:
data = read_tif02(file)
data_all = data_all+data
save_tif(data_all,r"D:\AAWORK\work\研究方向\研究方向01作物分類內(nèi)容\風(fēng)云數(shù)據(jù)\MERSI-II植被指數(shù)旬產(chǎn)品(250M)\kongbai_zhu_250m.tif",file_out)
5 生成一個空白TIF(每個像元值為0的TIF)
思路比較簡單,就是遍歷每個像元,然后把每個像元的值設(shè)置為0,設(shè)置為其它可以,然后再進(jìn)行保存。
from osgeo import gdal
import numpy as np
def read_tif(filepath):
dataset = gdal.Open(filepath)
col = dataset.RasterXSize#圖像長度
row = dataset.RasterYSize#圖像寬度
geotrans = dataset.GetGeoTransform()#讀取仿射變換
proj = dataset.GetProjection()#讀取投影
data = dataset.ReadAsArray()#轉(zhuǎn)為numpy格式
data = data.astype(np.float32)
# a = data[0][0]
# data[data == a] = np.nan
# data[data <= -3] = np.nan
return [col, row, geotrans, proj, data]
def save_tif(data, file, output):
ds = gdal.Open(file)
shape = data.shape
driver = gdal.GetDriverByName("GTiff")
dataset = driver.Create(output, shape[1], shape[0], 1, gdal.GDT_Int16)#保存的數(shù)據(jù)類型
dataset.SetGeoTransform(ds.GetGeoTransform())
dataset.SetProjection(ds.GetProjection())
dataset.GetRasterBand(1).WriteArray(data)
if __name__ == '__main__':
file_path = r"D:\AAWORK\work\2021NDVISUM.tif"
file_out = r"D:\AAWORK\work\kongbai.tif"
col, row, geotrans, proj, data = read_tif(file_path)
for i in range(0,row):
for j in range(0,col):
data[i][j] = 0
save_tif(data,file_path,file_out)以上就是Python實現(xiàn)分段讀取和保存遙感數(shù)據(jù)的詳細(xì)內(nèi)容,更多關(guān)于Python遙感數(shù)據(jù)的資料請關(guān)注腳本之家其它相關(guān)文章!
相關(guān)文章
tensorflow實現(xiàn)從.ckpt文件中讀取任意變量
這篇文章主要介紹了tensorflow實現(xiàn)從.ckpt文件中讀取任意變量,具有很好的參考價值,希望對大家有所幫助。一起跟隨小編過來看看吧2020-05-05
Python定時查詢starrocks數(shù)據(jù)庫并將結(jié)果保存在excel
這篇文章主要為大家詳細(xì)介紹了Python如何實現(xiàn)定時查詢starrocks數(shù)據(jù)庫并將結(jié)果保存在excel,文中的示例代碼講解詳細(xì),感興趣的小伙伴可以參考一下2025-03-03
淺談Pytorch中的自動求導(dǎo)函數(shù)backward()所需參數(shù)的含義
今天小編就為大家分享一篇淺談Pytorch中的自動求導(dǎo)函數(shù)backward()所需參數(shù)的含義,具有很好的參考價值,希望對大家有所幫助。一起跟隨小編過來看看吧2020-02-02
深度學(xué)習(xí)的MNIST手寫數(shù)字?jǐn)?shù)據(jù)集識別方式(準(zhǔn)確率99%,附代碼)
這篇文章主要介紹了深度學(xué)習(xí)的MNIST手寫數(shù)字?jǐn)?shù)據(jù)集識別方式(準(zhǔn)確率99%,附代碼),具有很好的參考價值,希望對大家有所幫助,如有錯誤或未考慮完全的地方,望不吝賜教2024-06-06
基于logstash實現(xiàn)日志文件同步elasticsearch
這篇文章主要介紹了基于logstash實現(xiàn)日志文件同步elasticsearch,文中通過示例代碼介紹的非常詳細(xì),對大家的學(xué)習(xí)或者工作具有一定的參考學(xué)習(xí)價值,需要的朋友可以參考下2020-08-08

