詳細(xì)講解AsyncTask使用說(shuō)明(值得收藏)
概念
AsyncTask:異步任務(wù),從字面上來(lái)說(shuō),就是在我們的UI主線程運(yùn)行的時(shí)候,異步的完成一些操作。AsyncTask允許我們的執(zhí)行一個(gè)異步的任務(wù)在后臺(tái)。我們可以將耗時(shí)的操作放在異步任務(wù)當(dāng)中來(lái)執(zhí)行,并隨時(shí)將任務(wù)執(zhí)行的結(jié)果返回給我們的UI線程來(lái)更新我們的UI控件。通過(guò)AsyncTask我們可以輕松的解決多線程之間的通信問(wèn)題。
怎么來(lái)理解AsyncTask呢?通俗一點(diǎn)來(lái)說(shuō),AsyncTask就相當(dāng)于Android給我們提供了一個(gè)多線程編程的一個(gè)框架,其介于Thread和Handler之間,我們?nèi)绻x一個(gè)AsyncTask,就需要定義一個(gè)類來(lái)繼承AsyncTask這個(gè)抽象類,并實(shí)現(xiàn)其唯一的一doInBackgroud 抽象方法。
類簡(jiǎn)介
AsyncTask = handler + 兩個(gè)線程池的維護(hù)一個(gè)任務(wù)隊(duì)列線程池,一個(gè)執(zhí)行線程池
其中:線程池用于線程調(diào)度、復(fù)用 & 執(zhí)行任務(wù);
Handler
用于異步通信
我們來(lái)看看AsyncTask這個(gè)抽象類的定義,當(dāng)我們定義一個(gè)類來(lái)繼承AsyncTask這個(gè)類的時(shí)候,我們需要為其指定3個(gè)泛型參數(shù):
AsyncTask <Params, Progress, Result>
- Params: 這個(gè)泛型指定的是我們傳遞給異步任務(wù)執(zhí)行時(shí)的參數(shù)的類型
- Progress: 這個(gè)泛型指定的是我們的異步任務(wù)在執(zhí)行的時(shí)候?qū)?zhí)行的進(jìn)度返回給UI線程的參數(shù)的類型
- Result: 這個(gè)泛型指定的異步任務(wù)執(zhí)行完后返回給UI線程的結(jié)果的類型
簡(jiǎn)單例子
private class DownloadFilesTask extends AsyncTask<URL, Integer, Long> { //忽略 } public void onClick(View v) { try { URL url = new URL("http://blog.csdn.net/"); new DownloadFilesTask().execute(url); } catch (MalformedURLException e) { e.printStackTrace(); } }
執(zhí)行流程
一、在執(zhí)行完 AsyncTask.excute() 后
二、方法分析
常用的AsyncTask繼承的方法有
- onPreExecute():異步任務(wù)開啟之前回調(diào),在主線程中執(zhí)行
- doInBackground():執(zhí)行異步任務(wù),在線程池中執(zhí)行
- onProgressUpdate():當(dāng)doInBackground中調(diào)用publishProgress時(shí)回調(diào),在主線程中執(zhí)行
- onPostExecute():在異步任務(wù)執(zhí)行之后回調(diào),在主線程中執(zhí)行
- onCancelled():在異步任務(wù)被取消時(shí)回調(diào)
小demo
效果圖:
Activity
public class AsyThreadActivity extends Activity implements View.OnClickListener { @BindView(R.id.btn_click) Button btnClick; @BindView(R.id.progress) ProgressBar progress; @BindView(R.id.btn_chancel) Button btnChancel; @BindView(R.id.text) TextView text; Mythread myasythread = new Mythread(); @Override protected void onCreate(@Nullable Bundle savedInstanceState) { super.onCreate(savedInstanceState); setContentView(R.layout.activity_asythread); ButterKnife.bind(this); initClcik(); } private void initClcik() { btnClick.setOnClickListener(this); btnChancel.setOnClickListener(this); myasythread.setOntextchance(new Mythread.Ontextchance() { @Override public void textchance(String s) { text.setText(s); } @Override public void progresschance(Integer number) { progress.setProgress(number); } }); } @Override public void onClick(View v) { switch (v.getId()) { case R.id.btn_click: myasythread.execute(); break; case R.id.btn_chancel: myasythread.cancel(true); break; default: break; } } }
myAsyncTAsk
public class Mythread extends AsyncTask<String,Integer,String> { private Ontextchance ontextchance; public Mythread() { super(); } @Override protected String doInBackground(String... params) { int count = 0; while(count<99){ count = count + 1; publishProgress(count); try { Thread.sleep(50); } catch (InterruptedException e) { e.printStackTrace(); } } return null; } @Override protected void onPreExecute() { ontextchance.textchance("加載中"); super.onPreExecute(); } @Override protected void onPostExecute(String s) { ontextchance.textchance("加載完畢"); super.onPostExecute(s); } @Override protected void onProgressUpdate(Integer... values) { ontextchance.progresschance(values[0]); ontextchance.textchance("loading..." + values[0] + "%"); super.onProgressUpdate(values); } @Override protected void onCancelled() { ontextchance.textchance("已取消"); ontextchance.progresschance(0); super.onCancelled(); }
源碼分析
好吧 ,在想寫之前剛剛好瞄到一位小哥哥的文章寫得超級(jí)好,然后我就偷懶一把,如下。
源碼分析是基于API24的源碼,我將會(huì)按照下面AsyncTask運(yùn)行的過(guò)程來(lái)分析
一、主分支
首先,execute()方法,開啟異步任務(wù)
接著,onPreExecute()方法,異步任務(wù)開啟前
接著,doInBackground()方法,異步任務(wù)正在執(zhí)行
最后,onPostExecute()方法,異步任務(wù)完成
二、次分支
onProgressUpdate()方法,異步任務(wù)更新UI
onCancelled()方法,異步任務(wù)取消
主分支部分
代碼開始的地方,是在創(chuàng)建AsyncTask類之后執(zhí)行的execute()方法
public final AsyncTask<Params, Progress, Result> execute(Params... params) { return executeOnExecutor(sDefaultExecutor, params); }
execute()方法會(huì)調(diào)用executeOnExecutor()方法
public final AsyncTask<Params, Progress, Result> executeOnExecutor(Executor exec, Params... params) { if (mStatus != Status.PENDING) { switch (mStatus) { case RUNNING: throw new IllegalStateException("Cannot execute task:" + " the task is already running."); case FINISHED: throw new IllegalStateException("Cannot execute task:" + " the task has already been executed " + "(a task can be executed only once)"); } } mStatus = Status.RUNNING; onPreExecute(); mWorker.mParams = params; exec.execute(mFuture); return this; }
AsyncTask定義了一個(gè)mStatus變量,表示異步任務(wù)的運(yùn)行狀態(tài),分別是PENDING、RUNNING、FINISHED,當(dāng)只有PENDING狀態(tài)時(shí),AsyncTask才會(huì)執(zhí)行,這樣也就保證了AsyncTask只會(huì)被執(zhí)行一次
繼續(xù)往下執(zhí)行,mStatus會(huì)被標(biāo)記為RUNNING,接著執(zhí)行,onPreExecute(),將參數(shù)賦值給mWorker,然后還有execute(mFuture)
這里的mWorker和mFuture究竟是什么,我們往下追蹤,來(lái)到AsyncTask的構(gòu)造函數(shù)中,可以找到這兩個(gè)的初始化
public AsyncTask() { mWorker = new WorkerRunnable<Params, Result>() { public Result call() throws Exception { mTaskInvoked.set(true); Process.setThreadPriority(Process.THREAD_PRIORITY_BACKGROUND); //noinspection unchecked Result result = doInBackground(mParams); Binder.flushPendingCommands(); return postResult(result); } }; mFuture = new FutureTask<Result>(mWorker) { @Override protected void done() { try { postResultIfNotInvoked(get()); } catch (InterruptedException e) { android.util.Log.w(LOG_TAG, e); } catch (ExecutionException e) { throw new RuntimeException("An error occurred while executing doInBackground()", e.getCause()); } catch (CancellationException e) { postResultIfNotInvoked(null); } } }; }
一、分析mWorker
mWorker是一個(gè)WorkerRunnable對(duì)象,跟蹤WorkerRunnable
private static abstract class WorkerRunnable<Params, Result> implements Callable<Result> { Params[] mParams; }
實(shí)際上,WorkerRunnable是AsyncTask的一個(gè)抽象內(nèi)部類,實(shí)現(xiàn)了Callable接口
二、分析mFuture
mFuture是一個(gè)FutureTask對(duì)象,跟蹤FutureTask
public FutureTask(Callable<V> callable) { if (callable == null) throw new NullPointerException(); this.callable = callable; this.state = NEW; // ensure visibility of callable }
實(shí)際上,F(xiàn)utureTask是java.util.concurrent包下的一個(gè)類,參數(shù)是個(gè)callable,并且將它賦值給FutureTask類中的callable
三、回過(guò)頭來(lái)看
回到我們AsyncTask初始化mFuture,這里的參數(shù)是mWorker也就不奇怪了,因?yàn)閙Worker就是一個(gè)callable,我們?cè)谏厦尜x值給FutureTask類中的callable就是這個(gè)mWorker
mFuture = new FutureTask<Result>(mWorker)
而關(guān)于mWorker和mFuture的初始化早在我們Activity中初始化好了,因?yàn)闃?gòu)造函數(shù)是跟AsyncTask類的創(chuàng)建而執(zhí)行的
new DownloadFilesTask()
知道了mWorker和mFuture是什么后,我們回到原來(lái)的executeOnExecutor()方法,在這里將mWorker的參數(shù)傳過(guò)去后,就開始用線程池execute這個(gè)mFuture
mWorker.mParams = params; exec.execute(mFuture);
一、分析exec
exec是通過(guò)executeOnExecutor()參數(shù)傳進(jìn)來(lái)的
public final AsyncTask<Params, Progress, Result> executeOnExecutor(Executor exec, Params... params)
也就是我們execute()方法傳過(guò)來(lái)的
public final AsyncTask<Params, Progress, Result> execute(Params... params) { return executeOnExecutor(sDefaultExecutor, params); }
這里可以看到exec就是這個(gè)sDefaultExecutor
二、分析sDefaultExecutor
我們跟蹤這個(gè)sDefaultExecutor,截取有關(guān)它的代碼
public static final Executor SERIAL_EXECUTOR = new SerialExecutor(); private static volatile Executor sDefaultExecutor = SERIAL_EXECUTOR; private static class SerialExecutor implements Executor { final ArrayDeque<Runnable> mTasks = new ArrayDeque<Runnable>(); Runnable mActive; public synchronized void execute(final Runnable r) { mTasks.offer(new Runnable() { public void run() { try { r.run(); } finally { scheduleNext(); } } }); if (mActive == null) { scheduleNext(); } } protected synchronized void scheduleNext() { if ((mActive = mTasks.poll()) != null) { THREAD_POOL_EXECUTOR.execute(mActive); } } }
從SerialExecutor可以發(fā)現(xiàn),exec.execute(mFuture)就是在調(diào)用SerialExecutor類的execute(final Runnable r)方法,這里的參數(shù)r就是mFuture
繼續(xù)往下走,SerialExecutor的execute()方法會(huì)將r封裝成Runnable,并添加到mTasks任務(wù)隊(duì)列中
繼續(xù)往下走,如果這時(shí)候沒有正在活動(dòng)的AsyncTask任務(wù),那么就會(huì)調(diào)用SerialExecutor的scheduleNext()方法,來(lái)執(zhí)行下一個(gè)AsyncTask任務(wù)
if (mActive == null) { scheduleNext(); }
繼續(xù)往下走,通過(guò)mTasks.poll()取出,將封裝在mTask的Runnable交給mActive,最后真正執(zhí)行的這個(gè)mActive的是THREAD_POOL_EXECUTOR,即執(zhí)行的這個(gè)mActive,也就是包裝在Runnable里面的mFuture
protected synchronized void scheduleNext() { if ((mActive = mTasks.poll()) != null) { THREAD_POOL_EXECUTOR.execute(mActive); } }
mFuture被執(zhí)行了,也就會(huì)執(zhí)行它的run()方法
public void run() { try { r.run(); } finally { scheduleNext(); } }
我們跟蹤到mFuture的run()方法中,切換到FutureTask類
public void run() { if (state != NEW || !U.compareAndSwapObject(this, RUNNER, null, Thread.currentThread())) return; try { Callable<V> c = callable; if (c != null && state == NEW) { V result; boolean ran; try { result = c.call(); ran = true; } catch (Throwable ex) { result = null; ran = false; setException(ex); } if (ran) set(result); } } finally { // runner must be non-null until state is settled to // prevent concurrent calls to run() runner = null; // state must be re-read after nulling runner to prevent // leaked interrupts int s = state; if (s >= INTERRUPTING) handlePossibleCancellationInterrupt(s); } }
這一段代碼其實(shí)就是將之前在mFutrue創(chuàng)建對(duì)象時(shí)候傳進(jìn)來(lái)的mWorker交給c
Callable<V> c = callable;
然后再調(diào)用c的call()方法,也就是mWorker的call()方法
result = c.call();
代碼又重新的定位到了mWorker類的call()方法
mWorker = new WorkerRunnable<Params, Result>() { public Result call() throws Exception { mTaskInvoked.set(true); Process.setThreadPriority(Process.THREAD_PRIORITY_BACKGROUND); //noinspection unchecked Result result = doInBackground(mParams); Binder.flushPendingCommands(); return postResult(result); } };
可以發(fā)現(xiàn),這里就調(diào)用了我們的doInBackground()方法,最后還返回postResult(),我們跟蹤這個(gè)postResult()方法
private Result postResult(Result result) { @SuppressWarnings("unchecked") Message message = getHandler().obtainMessage(MESSAGE_POST_RESULT, new AsyncTaskResult<Result>(this, result)); message.sendToTarget(); return result; }
觀察代碼,首先是getHandler(),它是一個(gè)單例,返回sHandler
private static Handler getHandler() { synchronized (AsyncTask.class) { if (sHandler == null) { sHandler = new InternalHandler(); } return sHandler; } }
也就是說(shuō)postResult方法會(huì)通過(guò)sHandler發(fā)送一個(gè)MESSAGE_POST_RESULT的消息,這個(gè)時(shí)候我們追蹤到sHandler
private static InternalHandler sHandler; private static class InternalHandler extends Handler { public InternalHandler() { super(Looper.getMainLooper()); } @SuppressWarnings({"unchecked", "RawUseOfParameterizedType"}) @Override public void handleMessage(Message msg) { AsyncTaskResult<?> result = (AsyncTaskResult<?>) msg.obj; switch (msg.what) { case MESSAGE_POST_RESULT: // There is only one result result.mTask.finish(result.mData[0]); break; case MESSAGE_POST_PROGRESS: result.mTask.onProgressUpdate(result.mData); break; } } }
可以發(fā)現(xiàn),sHandler收到MESSAGE_POST_PROGRESS消息后會(huì)調(diào)用result.mTask.finish(result.mData[0]),那么我們還必須知道result是個(gè)什么東西
AsyncTaskResult<?> result = (AsyncTaskResult<?>) msg.obj;
result是AsyncTask的內(nèi)部類,實(shí)際上就是個(gè)實(shí)體類,用來(lái)存儲(chǔ)變量的
private static class AsyncTaskResult<Data> { final AsyncTask mTask; final Data[] mData; AsyncTaskResult(AsyncTask task, Data... data) { mTask = task; mData = data; } }
result.mTask也就是AsyncTask,最后調(diào)用result.mTask.finish(result.mData[0]),即AsyncTask的finish()方法,我們跟蹤到finish()方法
private void finish(Result result) { if (isCancelled()) { onCancelled(result); } else { onPostExecute(result); } mStatus = Status.FINISHED; }
這里判斷AsyncTask是否已經(jīng)取消,如果不取消就執(zhí)行我們的onPostExecute(),最后將狀態(tài)設(shè)置為FINISHED,整一個(gè)AsyncTask的方法都執(zhí)行完了,我們只需要繼承AsyncTask實(shí)現(xiàn)其中的方法就可以按分析的順序往下執(zhí)行了
次分支部分
在AsyncTask中的finish()方法,我們可以看到onCancelled()方法跟onPostExecute()一起的,只要isCancelled()的值為true,就執(zhí)行onCancelled()方法
private void finish(Result result) { if (isCancelled()) { onCancelled(result); } else { onPostExecute(result); } mStatus = Status.FINISHED; }
我們代碼跟蹤isCancelled()方法
public final boolean isCancelled() { return mCancelled.get(); }
發(fā)現(xiàn)是在mCancelled中獲取的,那我們就必須知道這個(gè)mCancelled是什么,代碼跟蹤到mCancelled
private final AtomicBoolean mCancelled = new AtomicBoolean();
mCancelled實(shí)際上就是個(gè)Boolean對(duì)象,那我們搜索它是在哪個(gè)時(shí)候設(shè)置的
public final boolean cancel(boolean mayInterruptIfRunning) { mCancelled.set(true); return mFuture.cancel(mayInterruptIfRunning); }
可以發(fā)現(xiàn),只要我們?cè)贏syncTask類中調(diào)用這個(gè)方法即可停止異步任務(wù)
而onProgressUpdate()方法,是在sHandler中執(zhí)行,sHandler收到MESSAGE_POST_PROGRESS消息后,執(zhí)行,我們搜索MESSAGE_POST_PROGRESS在什么時(shí)候發(fā)送的
private static class InternalHandler extends Handler { public InternalHandler() { super(Looper.getMainLooper()); } @SuppressWarnings({"unchecked", "RawUseOfParameterizedType"}) @Override public void handleMessage(Message msg) { AsyncTaskResult<?> result = (AsyncTaskResult<?>) msg.obj; switch (msg.what) { case MESSAGE_POST_RESULT: // There is only one result result.mTask.finish(result.mData[0]); break; case MESSAGE_POST_PROGRESS: result.mTask.onProgressUpdate(result.mData); break; } } }
可以發(fā)現(xiàn),只要我們?cè)贏syncTask類中調(diào)用publishProgress()方法即可執(zhí)行onProgressUpdate()方法
protected final void publishProgress(Progress... values) { if (!isCancelled()) { getHandler().obtainMessage(MESSAGE_POST_PROGRESS, new AsyncTaskResult<Progress>(this, values)).sendToTarget(); } }
源碼原文:https://blog.csdn.net/qq_30379689/article/details/53203556
說(shuō)實(shí)話上面源碼分析寫得真好,我在看了上面的源碼感覺少了一丟丟東西,自己在額外的補(bǔ)充一點(diǎn)東西
補(bǔ)充:THREAD_POOL_EXECUTOR
/** * 源碼分析:THREAD_POOL_EXECUTOR.execute() * 說(shuō)明: * a. THREAD_POOL_EXECUTOR實(shí)際上是1個(gè)已配置好的可執(zhí)行并行任務(wù)的線程池 * b. 調(diào)用THREAD_POOL_EXECUTOR.execute()實(shí)際上是調(diào)用線程池的execute()去執(zhí)行具體耗時(shí)任務(wù) * c. 而該耗時(shí)任務(wù)則是步驟2中初始化WorkerRunnable實(shí)例對(duì)象時(shí)復(fù)寫的call() * 注:下面先看任務(wù)執(zhí)行線程池的線程配置過(guò)程,看完后請(qǐng)回到步驟2中的源碼分析call() */ // 步驟1:參數(shù)設(shè)置 //獲得當(dāng)前CPU的核心數(shù) private static final int CPU_COUNT = Runtime.getRuntime().availableProcessors(); //設(shè)置線程池的核心線程數(shù)2-4之間,但是取決于CPU核數(shù) private static final int CORE_POOL_SIZE = Math.max(2, Math.min(CPU_COUNT - 1, 4)); //設(shè)置線程池的最大線程數(shù)為 CPU核數(shù)*2+1 private static final int MAXIMUM_POOL_SIZE = CPU_COUNT * 2 + 1; //設(shè)置線程池空閑線程存活時(shí)間30s private static final int KEEP_ALIVE_SECONDS = 30; //初始化線程工廠 private static final ThreadFactory sThreadFactory = new ThreadFactory() { private final AtomicInteger mCount = new AtomicInteger(1); public Thread newThread(Runnable r) { return new Thread(r, "AsyncTask #" + mCount.getAndIncrement()); } }; //初始化存儲(chǔ)任務(wù)的隊(duì)列為L(zhǎng)inkedBlockingQueue 最大容量為128 private static final BlockingQueue<Runnable> sPoolWorkQueue = new LinkedBlockingQueue<Runnable>(128); // 步驟2: 根據(jù)參數(shù)配置執(zhí)行任務(wù)線程池,即 THREAD_POOL_EXECUTOR public static final Executor THREAD_POOL_EXECUTOR; static { ThreadPoolExecutor threadPoolExecutor = new ThreadPoolExecutor( CORE_POOL_SIZE, MAXIMUM_POOL_SIZE, KEEP_ALIVE_SECONDS, TimeUnit.SECONDS, sPoolWorkQueue, sThreadFactory); // 設(shè)置核心線程池的 超時(shí)時(shí)間也為30s threadPoolExecutor.allowCoreThreadTimeOut(true); THREAD_POOL_EXECUTOR = threadPoolExecutor; }
還有就是 我們可以通過(guò)源碼可以知道 使用AsyncTask執(zhí)行的后臺(tái)線程只有一個(gè),這個(gè)結(jié)局看起來(lái)很悲傷。我們?cè)詾閳?zhí)行如下。
但是現(xiàn)實(shí)是這樣子的
被串行設(shè)置了 如下 synchronized
private static class SerialExecutor implements Executor { // SerialExecutor = 靜態(tài)內(nèi)部類 // 即 是所有實(shí)例化的AsyncTask對(duì)象公有的 // SerialExecutor 內(nèi)部維持了1個(gè)雙向隊(duì)列; // 容量根據(jù)元素?cái)?shù)量調(diào)節(jié) final ArrayDeque<Runnable> mTasks = new ArrayDeque<Runnable>(); Runnable mActive; // execute()被同步鎖synchronized修飾 // 即說(shuō)明:通過(guò)鎖使得該隊(duì)列保證AsyncTask中的任務(wù)是串行執(zhí)行的 // 即 多個(gè)任務(wù)需1個(gè)個(gè)加到該隊(duì)列中;然后 執(zhí)行完隊(duì)列頭部的再執(zhí)行下一個(gè),以此類推 public synchronized void execute(final Runnable r) { // 將實(shí)例化后的FutureTask類 的實(shí)例對(duì)象傳入 // 即相當(dāng)于:向隊(duì)列中加入一個(gè)新的任務(wù) mTasks.offer(new Runnable() { public void run() { try { r.run(); } finally { scheduleNext();->>分析3 } } }); // 若當(dāng)前無(wú)任務(wù)執(zhí)行,則去隊(duì)列中取出1個(gè)執(zhí)行 if (mActive == null) { scheduleNext(); } } // 分析3 protected synchronized void scheduleNext() { // 1. 取出隊(duì)列頭部任務(wù) if ((mActive = mTasks.poll()) != null) { // 2. 執(zhí)行取出的隊(duì)列頭部任務(wù) // 即 調(diào)用執(zhí)行任務(wù)線程池類(THREAD_POOL_EXECUTOR)->>繼續(xù)往下看 THREAD_POOL_EXECUTOR.execute(mActive); } } }
好吧,我到現(xiàn)在還是沒有明白為什么他要如此限制,等哪位小哥哥,知道這個(gè)為什么的時(shí)候告訴我一聲,拜托拜托
如果我們還是想并行執(zhí)行,參考如下
方法一,繞過(guò) excute 方法避免SerialExecutor 對(duì)象
方法二,繞過(guò) excute 方法避免被轉(zhuǎn)換為 自定義線程池
方法三,在excute 方法將默認(rèn)對(duì)象換為我們的 自定義線程池對(duì)象
//自定義線程池 private static final int CPU_COUNT = Runtime.getRuntime().availableProcessors(); private static final int CORE_POOL_SIZE = Math.max(2, Math.min(CPU_COUNT - 1, 4)); private static final int MAXIMUM_POOL_SIZE = CPU_COUNT * 2 + 1; private static final int KEEP_ALIVE_SECONDS = 60; public static final Executor MY_THREAD_POOL_EXECUTOR; private static final ThreadFactory sThreadFactory = new ThreadFactory() { private final AtomicInteger mCount = new AtomicInteger(1); @Override public Thread newThread(Runnable r) { return new Thread(r, "AsyncTask #" + mCount.getAndIncrement()); } }; private static final BlockingQueue<Runnable> sPoolWorkQueue = new LinkedBlockingQueue<Runnable>(128); static { ThreadPoolExecutor threadPoolExecutor = new ThreadPoolExecutor( CORE_POOL_SIZE, MAXIMUM_POOL_SIZE, KEEP_ALIVE_SECONDS, TimeUnit.SECONDS, sPoolWorkQueue, sThreadFactory); threadPoolExecutor.allowCoreThreadTimeOut(true); MY_THREAD_POOL_EXECUTOR = threadPoolExecutor; }
case R.id.btAsyncTaskSerial://串行執(zhí)行 new MyAsyncTask(mActivity, "Task#1 ").execute("123"); new MyAsyncTask(mActivity, "Task#2 ").execute("123"); new MyAsyncTask(mActivity, "Task#3 ").execute("123"); break; case R.id.btAsyncTaskParallel://并行執(zhí)行 -- 這里使用 AsyncTask 自帶的線程池 new MyAsyncTask(mActivity, "Task#1 ").executeOnExecutor(AsyncTask.THREAD_POOL_EXECUTOR, "123"); new MyAsyncTask(mActivity, "Task#2 ").executeOnExecutor(AsyncTask.THREAD_POOL_EXECUTOR, "123"); new MyAsyncTask(mActivity, "Task#3 ").executeOnExecutor(AsyncTask.THREAD_POOL_EXECUTOR, "123"); break; case R.id.btAsyncTaskParallelByUs://并行執(zhí)行 -- 自定義線程池 new MyAsyncTask(mActivity, "Task#1 ").executeOnExecutor(MY_THREAD_POOL_EXECUTOR, "123"); new MyAsyncTask(mActivity, "Task#2 ").executeOnExecutor(MY_THREAD_POOL_EXECUTOR, "123"); new MyAsyncTask(mActivity, "Task#3 ").executeOnExecutor(MY_THREAD_POOL_EXECUTOR, "123"); break; case R.id.btAsyncTaskParallelByUs2://并行執(zhí)行 -- 自定義線程池 另外一種方式 MyAsyncTask.setDefaultExecutor(MY_THREAD_POOL_EXECUTOR);//替換掉默認(rèn)的 AsyncTask.SERIAL_EXECUTOR new MyAsyncTask(mActivity, "Task#a ").execute("abc"); new MyAsyncTask(mActivity, "Task#b ").execute("abc"); new MyAsyncTask(mActivity, "Task#c ").execute("abc"); break;
重要的事再次強(qiáng)調(diào)我到現(xiàn)在還是沒有明白為什么他要如此限制,等哪位小哥哥,知道這個(gè)為什么的時(shí)候告訴我一聲,拜托拜托
Thanks
到此這篇關(guān)于詳細(xì)講解AsyncTask使用說(shuō)明(值得收藏)的文章就介紹到這了,更多相關(guān)AsyncTask使用內(nèi)容請(qǐng)搜索腳本之家以前的文章或繼續(xù)瀏覽下面的相關(guān)文章希望大家以后多多支持腳本之家!
相關(guān)文章
RecyclerView實(shí)現(xiàn)水波紋點(diǎn)擊效果
這篇文章主要為大家詳細(xì)介紹了RecyclerView實(shí)現(xiàn)水波紋點(diǎn)擊效果,具有一定的參考價(jià)值,感興趣的小伙伴們可以參考一下2019-01-01解決Android Studio一直停留在MyApplication:syncing的問(wèn)題
這篇文章主要介紹了Android Studio一直停留在MyApplication:syncing的完美解決方案,本文給大家介紹的非常詳細(xì),對(duì)大家的學(xué)習(xí)或工作具有一定的參考借鑒價(jià)值,需要的朋友可以參考下2020-10-10詳解Android如何實(shí)現(xiàn)自定義的動(dòng)畫曲線
最近在寫動(dòng)畫相關(guān)的篇章,經(jīng)常會(huì)用到 Curve 這個(gè)動(dòng)畫曲線類,那這個(gè)類到底怎么實(shí)現(xiàn)的?如果想自己來(lái)一個(gè)自定義的動(dòng)畫曲線該怎么弄?本文將為大家詳細(xì)解答2022-04-04基于Android實(shí)現(xiàn)保存圖片到本地并可以在相冊(cè)中顯示出來(lái)
App應(yīng)用越來(lái)越人性化,不僅界面優(yōu)美而且服務(wù)也很多樣化,操作也非常方便。通過(guò)本篇文章給大家介紹基于Android實(shí)現(xiàn)保存圖片到本地并可以在相冊(cè)中顯示出來(lái),對(duì)android保存圖片相關(guān)知識(shí)感興趣的朋友一起學(xué)習(xí)吧2015-12-12