亚洲乱码中文字幕综合,中国熟女仑乱hd,亚洲精品乱拍国产一区二区三区,一本大道卡一卡二卡三乱码全集资源,又粗又黄又硬又爽的免费视频

淺談MySQL中使用IN會走索引嗎

 更新時間:2025年02月21日 10:49:32   作者:cxSmiles  
本文主要介紹了淺談MySQL中使用IN會走索引嗎,通過三個案例分析了MySQL 5.7.34版本中IN操作符的執(zhí)行情況,感興趣的可以了解一下

結(jié)論: MySQL優(yōu)化器在發(fā)現(xiàn)執(zhí)行全表掃描效率 > 索引的效率時,會選擇全表掃描。

  • 至于IN的數(shù)據(jù)量占全表的20%或30%以內(nèi)會走索引,沒有明確的答案。
  • 根據(jù)優(yōu)化器分析來選擇查詢成本更低的執(zhí)行方式。

MySQL IN流程驗證

mysql版本為5.7.34

CREATE TABLE `_default` (
  `id` bigint(20) NOT NULL AUTO_INCREMENT COMMENT '主鍵id',
  `default_name` varchar(100) NOT NULL COMMENT '默認(rèn)名稱',
  `default_code` varchar(50) NOT NULL COMMENT '默認(rèn)編碼',
  `default_type` tinyint(3) unsigned NOT NULL COMMENT '默認(rèn)類型',
  `start_time` datetime NOT NULL COMMENT '開始時間',
  `end_time` datetime NOT NULL COMMENT '結(jié)束時間',
  `status` tinyint(3) unsigned NOT NULL DEFAULT '1' COMMENT '狀態(tài)(1:未發(fā)布, 2:已發(fā)布, 3:已生效, 4:已失效, 5:已作廢)',
  `deleted` tinyint(3) unsigned NOT NULL DEFAULT '0' COMMENT '是否刪除 0:否 1:是',
  `create_by` varchar(50) NOT NULL COMMENT '創(chuàng)建人',
  `create_time` datetime NOT NULL COMMENT '創(chuàng)建時間',
  `update_by` varchar(50) DEFAULT NULL COMMENT '更新人',
  `update_time` datetime DEFAULT NULL COMMENT '更新時間',
  PRIMARY KEY (`id`),
  UNIQUE KEY `uk_default_code` (`default_code`) USING BTREE,
  KEY `idx_status` (`status`) USING BTREE
) ENGINE=InnoDB DEFAULT CHARSET=utf8mb4 COMMENT='_default';

-- 測試數(shù)據(jù)
INSERT INTO `_default` VALUES (1, 'test2024-07-29 13:56:03', 'DEFAULT23121410204', 1, '2023-08-11 14:35:41', '2023-08-11 14:35:41', 2, 0, '1', '2023-12-14 16:25:39', NULL, NULL);
INSERT INTO `_default` VALUES (2, 'demoData', 'DEFAULT23121410205', 1, '2023-08-11 14:35:41', '2023-08-11 14:35:41', 2, 0, '1', '2023-12-14 16:25:40', NULL, NULL);
INSERT INTO `_default` VALUES (3, 'demoData', 'DEFAULT23121410206', 1, '2023-08-11 14:35:41', '2023-08-11 14:35:41', 2, 0, '2', '2023-12-14 16:25:41', NULL, NULL);
INSERT INTO `_default` VALUES (4, 'demoData', 'DEFAULT23121410207', 1, '2023-08-11 14:35:41', '2023-08-11 14:35:41', 2, 0, '1', '2023-12-14 16:25:42', NULL, NULL);
INSERT INTO `_default` VALUES (5, 'demoData', 'DEFAULT23121410208', 1, '2023-08-11 14:35:41', '2023-08-11 14:35:41', 2, 0, '1', '2023-12-14 16:25:43', NULL, NULL);
INSERT INTO `_default` VALUES (6, 'demoData', 'DEFAULT23121410209', 0, '2023-08-11 14:35:41', '2023-08-11 14:35:41', 2, 0, '1', '2023-12-14 16:27:09', NULL, NULL);
INSERT INTO `_default` VALUES (7, 'demoData', 'DEFAULT23121410210', 0, '2023-08-11 14:35:41', '2023-08-11 14:35:41', 2, 0, '1', '2023-12-14 16:27:10', NULL, NULL);
INSERT INTO `_default` VALUES (8, 'demoData', 'DEFAULT23121410211', 0, '2023-08-11 14:35:41', '2023-08-11 14:35:41', 2, 0, '1', '2023-12-14 16:27:11', NULL, NULL);
INSERT INTO `_default` VALUES (9, 'demoData', 'DEFAULT23121410212', 0, '2023-08-11 14:35:41', '2023-08-11 14:35:41', 1, 0, '1', '2023-12-14 16:27:12', NULL, NULL);
INSERT INTO `_default` VALUES (10, 'demoData', 'DEFAULT23121410213', 0, '2023-08-11 14:35:41', '2023-08-11 14:35:41', 1, 1, '1', '2023-12-14 16:27:13', NULL, NULL);

案例一

explain select * from _default where id in (1);

在這里插入圖片描述

案例二

explain select * from _default where id in (1,2,3);

在這里插入圖片描述

案例三

explain select * from _default where id in (1,2,3,4,5,6,7);

在這里插入圖片描述

從上面三個案例可以看出案例一、案例二走了索引,案例三沒有走索引。why?

MySQL TRACE解析

-- step1:查詢mysql optimizer_trace是否開啟,on為開啟
show variables like 'optimizer_trace';
-- step2:若未開啟,設(shè)置為開啟
set optimizer_trace = 'enabled=on';

-- step3:需要注意查詢sql和TRACE一起查詢, 如果單獨查詢完再查詢TRAC,查詢結(jié)果為空
select * from _default where id in (1,2,3,4,5,6,7);
select TRACE from `information_schema`.`OPTIMIZER_TRACE`
	

案例一

{
	"steps": [
		{
			"join_preparation": {
				"select#": 1,
				"steps": [
					{
						"expanded_query": "/* select#1 */ select `_default`.`id` AS `id`,`_default`.`default_name` AS `default_name`,`_default`.`default_code` AS `default_code`,`_default`.`default_type` AS `default_type`,`_default`.`start_time` AS `start_time`,`_default`.`end_time` AS `end_time`,`_default`.`status` AS `status`,`_default`.`deleted` AS `deleted`,`_default`.`create_by` AS `create_by`,`_default`.`create_time` AS `create_time`,`_default`.`update_by` AS `update_by`,`_default`.`update_time` AS `update_time` from `_default` where (`_default`.`id` = 1)"
					}
				]
			}
		},
		{
			"join_optimization": { -- sql優(yōu)化階段
				"select#": 1,
				"steps": [
					{
						"condition_processing": {
							"condition": "WHERE",
							"original_condition": "(`_default`.`id` = 1)",
							"steps": [
								{
									"transformation": "equality_propagation",
									"resulting_condition": "multiple equal(1, `_default`.`id`)"
								},
								{
									"transformation": "constant_propagation",
									"resulting_condition": "multiple equal(1, `_default`.`id`)"
								},
								{
									"transformation": "trivial_condition_removal",
									"resulting_condition": "multiple equal(1, `_default`.`id`)"
								}
							]
						}
					},
					{
						"substitute_generated_columns": {}
					},
					{
						"table_dependencies": [
							{
								"table": "`_default`",
								"row_may_be_null": false,
								"map_bit": 0,
								"depends_on_map_bits": []
							}
						]
					},
					{
						"ref_optimizer_key_uses": [
							{
								"table": "`_default`",
								"field": "id",
								"equals": "1",
								"null_rejecting": false
							}
						]
					},
					{
						"rows_estimation": [
							{
								"table": "`_default`",
								"rows": 1,
								"cost": 1,
								"table_type": "const",
								"empty": false
							}
						]
					},
					{
						"condition_on_constant_tables": "1",
						"condition_value": true
					},
					{
						"attaching_conditions_to_tables": {
							"original_condition": "1",
							"attached_conditions_computation": [],
							"attached_conditions_summary": []
						}
					},
					{
						"refine_plan": []
					}
				]
			}
		},
		{
			"join_execution": {
				"select#": 1,
				"steps": []
			}
		}
	]
}

案例二

{
	"steps": [
		{
			"join_preparation": {
				"select#": 1,
				"steps": [
					{
						"IN_uses_bisection": true
					},
					{
						"expanded_query": "/* select#1 */ select `_default`.`id` AS `id`,`_default`.`default_name` AS `default_name`,`_default`.`default_code` AS `default_code`,`_default`.`default_type` AS `default_type`,`_default`.`start_time` AS `start_time`,`_default`.`end_time` AS `end_time`,`_default`.`status` AS `status`,`_default`.`deleted` AS `deleted`,`_default`.`create_by` AS `create_by`,`_default`.`create_time` AS `create_time`,`_default`.`update_by` AS `update_by`,`_default`.`update_time` AS `update_time` from `_default` where (`_default`.`id` in (1,2,3))"
					}
				]
			}
		},
		{
			"join_optimization": {
				"select#": 1,
				"steps": [
					{
						"condition_processing": {
							"condition": "WHERE",
							"original_condition": "(`_default`.`id` in (1,2,3))",
							"steps": [
								{
									"transformation": "equality_propagation",
									"resulting_condition": "(`_default`.`id` in (1,2,3))"
								},
								{
									"transformation": "constant_propagation",
									"resulting_condition": "(`_default`.`id` in (1,2,3))"
								},
								{
									"transformation": "trivial_condition_removal",
									"resulting_condition": "(`_default`.`id` in (1,2,3))"
								}
							]
						}
					},
					{
						"substitute_generated_columns": {}
					},
					{
						"table_dependencies": [
							{
								"table": "`_default`",
								"row_may_be_null": false,
								"map_bit": 0,
								"depends_on_map_bits": []
							}
						]
					},
					{
						"ref_optimizer_key_uses": []
					},
					{
						"rows_estimation": [
							{
								"table": "`_default`",
								"range_analysis": {
									"table_scan": {
										"rows": 26,
										"cost": 8.3
									},
									"potential_range_indexes": [
										{
											"index": "PRIMARY",
											"usable": true,
											"key_parts": [
												"id"
											]
										},
										{
											"index": "uk_default_code",
											"usable": false,
											"cause": "not_applicable"
										},
										{
											"index": "idx_status",
											"usable": false,
											"cause": "not_applicable"
										},
										{
											"index": "idx_default_name",
											"usable": false,
											"cause": "not_applicable"
										}
									],
									"setup_range_conditions": [],
									"group_index_range": {
										"chosen": false,
										"cause": "not_group_by_or_distinct"
									},
									"analyzing_range_alternatives": {
										"range_scan_alternatives": [
											{
												"index": "PRIMARY",
												"ranges": [
													"1 <= id <= 1",
													"2 <= id <= 2",
													"3 <= id <= 3"
												],
												"index_dives_for_eq_ranges": true,
												"rowid_ordered": true,
												"using_mrr": false,
												"index_only": false,
												"rows": 3,
												"cost": 3.6153,
												"chosen": true
											}
										],
										"analyzing_roworder_intersect": {
											"usable": false,
											"cause": "too_few_roworder_scans"
										}
									},
									"chosen_range_access_summary": {
										"range_access_plan": {
											"type": "range_scan",
											"index": "PRIMARY",
											"rows": 3,
											"ranges": [
												"1 <= id <= 1",
												"2 <= id <= 2",
												"3 <= id <= 3"
											]
										},
										"rows_for_plan": 3,
										"cost_for_plan": 3.6153,
										"chosen": true
									}
								}
							}
						]
					},
					{
						"considered_execution_plans": [
							{
								"plan_prefix": [],
								"table": "`_default`",
								"best_access_path": {
									"considered_access_paths": [
										{
											"rows_to_scan": 3,
											"access_type": "range",
											"range_details": {
												"used_index": "PRIMARY"
											},
											"resulting_rows": 3,
											"cost": 4.2153,
											"chosen": true
										}
									]
								},
								"condition_filtering_pct": 100,
								"rows_for_plan": 3,
								"cost_for_plan": 4.2153,
								"chosen": true
							}
						]
					},
					{
						"attaching_conditions_to_tables": {
							"original_condition": "(`_default`.`id` in (1,2,3))",
							"attached_conditions_computation": [],
							"attached_conditions_summary": [
								{
									"table": "`_default`",
									"attached": "(`_default`.`id` in (1,2,3))"
								}
							]
						}
					},
					{
						"refine_plan": [
							{
								"table": "`_default`"
							}
						]
					}
				]
			}
		},
		{
			"join_execution": {
				"select#": 1,
				"steps": []
			}
		}
	]
}

案例三

{
	"steps": [
		{
			"join_preparation": {
				"select#": 1,
				"steps": [
					{
						"IN_uses_bisection": true
					},
					{
						"expanded_query": "/* select#1 */ select `_default`.`id` AS `id`,`_default`.`default_name` AS `default_name`,`_default`.`default_code` AS `default_code`,`_default`.`default_type` AS `default_type`,`_default`.`start_time` AS `start_time`,`_default`.`end_time` AS `end_time`,`_default`.`status` AS `status`,`_default`.`deleted` AS `deleted`,`_default`.`create_by` AS `create_by`,`_default`.`create_time` AS `create_time`,`_default`.`update_by` AS `update_by`,`_default`.`update_time` AS `update_time` from `_default` where (`_default`.`id` in (1,2,3,4,5,6,7))"
					}
				]
			}
		},
		{
			"join_optimization": {
				"select#": 1,
				"steps": [
					{
						"condition_processing": {
							"condition": "WHERE",
							"original_condition": "(`_default`.`id` in (1,2,3,4,5,6,7))",
							"steps": [
								{
									"transformation": "equality_propagation",
									"resulting_condition": "(`_default`.`id` in (1,2,3,4,5,6,7))"
								},
								{
									"transformation": "constant_propagation",
									"resulting_condition": "(`_default`.`id` in (1,2,3,4,5,6,7))"
								},
								{
									"transformation": "trivial_condition_removal",
									"resulting_condition": "(`_default`.`id` in (1,2,3,4,5,6,7))"
								}
							]
						}
					},
					{
						"substitute_generated_columns": {}
					},
					{
						"table_dependencies": [
							{
								"table": "`_default`",
								"row_may_be_null": false,
								"map_bit": 0,
								"depends_on_map_bits": []
							}
						]
					},
					{
						"ref_optimizer_key_uses": []
					},
					{
						"rows_estimation": [ -- 預(yù)估表的訪問成本 
							{
								"table": "`_default`",
								"range_analysis": {
									"table_scan": { -- 全表掃描的分析
										"rows": 26,	-- 掃描行數(shù)
										"cost": 8.3 -- 查詢成本
									},
									"potential_range_indexes": [
										{
											"index": "PRIMARY",
											"usable": true,
											"key_parts": [
												"id"
											]
										},
										{
											"index": "uk_default_code",
											"usable": false,
											"cause": "not_applicable"
										},
										{
											"index": "idx_status",
											"usable": false,
											"cause": "not_applicable"
										},
										{
											"index": "idx_default_name",
											"usable": false,
											"cause": "not_applicable"
										}
									],
									"setup_range_conditions": [],
									"group_index_range": {
										"chosen": false,
										"cause": "not_group_by_or_distinct"
									},
									"analyzing_range_alternatives": { -- 分析各個索引使用成本
										"range_scan_alternatives": [
											{
												"index": "PRIMARY",
												"ranges": [		-- 索引使用范圍
													"1 <= id <= 1",
													"2 <= id <= 2",
													"3 <= id <= 3",
													"4 <= id <= 4",
													"5 <= id <= 5",
													"6 <= id <= 6",
													"7 <= id <= 7"
												],
												"index_dives_for_eq_ranges": true,
												"rowid_ordered": true,
												"using_mrr": false,
												"index_only": false,
												"rows": 7,		 -- 掃描行數(shù)
												"cost": 8.4224,  -- 索引使用成本
												"chosen": false, -- 是否使用索引
												"cause": "cost"
											}
										],
										"analyzing_roworder_intersect": {
											"usable": false,
											"cause": "too_few_roworder_scans"
										}
									}
								}
							}
						]
					},
					{
						"considered_execution_plans": [
							{
								"plan_prefix": [],
								"table": "`_default`",
								"best_access_path": {
									"considered_access_paths": [
										{
											"rows_to_scan": 26,
											"access_type": "scan",
											"resulting_rows": 26,
											"cost": 6.2,
											"chosen": true
										}
									]
								},
								"condition_filtering_pct": 100,
								"rows_for_plan": 26,
								"cost_for_plan": 6.2,
								"chosen": true
							}
						]
					},
					{
						"attaching_conditions_to_tables": {
							"original_condition": "(`_default`.`id` in (1,2,3,4,5,6,7))",
							"attached_conditions_computation": [],
							"attached_conditions_summary": [
								{
									"table": "`_default`",
									"attached": "(`_default`.`id` in (1,2,3,4,5,6,7))"
								}
							]
						}
					},
					{
						"refine_plan": [
							{
								"table": "`_default`"
							}
						]
					}
				]
			}
		},
		{
			"join_execution": {
				"select#": 1,
				"steps": []
			}
		}
	]
}

join_optimization.rows_estimation.range_analysis.table_scan 和 join_optimization.rows_estimation.range_analysis.analyzing_range_alternatives

在這里插入圖片描述

當(dāng)索引使用成本 > 全表掃描的成本時就會選擇全表掃描,全表rows為26,索引rows為7,為什么不用索引?

  • 如果是查所有數(shù)據(jù),存在回表的情況,IN的越多回表成本越高
  • 如果是查詢條件和返回字段相同并且存在索引的情況(覆蓋索引),這種情況可能優(yōu)化器是可能選擇索引

system > const> eq_ref > ref > range > index > all

  • system:只有一行記錄。
  • const:索引一次就找到了,主鍵和唯一索引。
  • eq_ref:唯一的索引,表與表之間關(guān)聯(lián),關(guān)聯(lián)條件為主鍵或唯一索引。
  • ref:非唯一的索引,根據(jù)某個字段查詢(有二級索引),存在多行數(shù)據(jù)。
  • range:范圍查詢。
  • index:查詢索引樹(覆蓋索引的場景)。
  • all:查詢所有數(shù)據(jù)(與index的區(qū)別在于index只遍歷索引樹,all會在磁盤中查找)。

小結(jié)

到此這篇關(guān)于淺談MySQL中使用IN會走索引嗎的文章就介紹到這了,更多相關(guān)MySQL IN索引內(nèi)容請搜索腳本之家以前的文章或繼續(xù)瀏覽下面的相關(guān)文章希望大家以后多多支持腳本之家!

相關(guān)文章

  • mysql主從同步原理及應(yīng)用場景示例詳解

    mysql主從同步原理及應(yīng)用場景示例詳解

    這篇文章主要為大家介紹了mysql主從同步原理及應(yīng)用場景示例詳解,有需要的朋友可以借鑒參考下,希望能夠有所幫助,祝大家多多進步,早日升職加薪
    2022-08-08
  • MYSQL無法啟動提示: Default storage engine (InnoDB) is not available的解決方法

    MYSQL無法啟動提示: Default storage engine (InnoDB) is not availabl

    自己用的MYSQL都是用MYISAM數(shù)據(jù)庫,還沒涉及到需要INNODB,因此打算直接不加載INNODB引擎。
    2011-05-05
  • MySQL中CASE?WHEN語句用法、示例與解析舉例

    MySQL中CASE?WHEN語句用法、示例與解析舉例

    這篇文章主要給大家介紹了關(guān)于MySQL中CASE?WHEN語句用法、示例與解析的相關(guān)資料,case when語句用于計算條件列表并返回多個可能結(jié)果表達(dá)式之一,文中通過代碼介紹的非常詳細(xì),需要的朋友可以參考下
    2024-05-05
  • CMS不要讓MySQL為你流淚

    CMS不要讓MySQL為你流淚

    MySQL是中小型網(wǎng)站普遍使用的數(shù)據(jù)庫之一,然而,很多人并不清楚MySQL到底能支持多大的數(shù)據(jù)量,再加上某些國內(nèi)CMS廠商把數(shù)據(jù)承載量的責(zé)任推給它,導(dǎo)致很多不了解MySQL的站長對它產(chǎn)生了很多誤解
    2008-12-12
  • mysql正確刪除數(shù)據(jù)的方法(drop,delete,truncate)

    mysql正確刪除數(shù)據(jù)的方法(drop,delete,truncate)

    這篇文章主要給大家介紹了關(guān)于mysql正確刪除數(shù)據(jù)的相關(guān)資料,DELETE語句是MySQL中最常用的刪除數(shù)據(jù)的方式之一,但也有幾種其他方法來實現(xiàn),需要的朋友可以參考下
    2023-10-10
  • SQL Server索引設(shè)計基礎(chǔ)知識詳解使用

    SQL Server索引設(shè)計基礎(chǔ)知識詳解使用

    為了使索引的使用效率更高,在創(chuàng)建索引時,必須考慮在哪些字段上創(chuàng)建索引和創(chuàng)建什么類型的索引。索引設(shè)計不合理或者缺少索引都會對數(shù)據(jù)庫和應(yīng)用程序的性能造成障礙。高效的索引對于獲得良好的性能非常重要。設(shè)計索引時,應(yīng)該考慮相應(yīng)準(zhǔn)則
    2023-04-04
  • MySQL使用Partition功能實現(xiàn)水平分區(qū)的策略

    MySQL使用Partition功能實現(xiàn)水平分區(qū)的策略

    這篇文章主要介紹了MySQL使用Partition功能實現(xiàn)水平分區(qū),給大家提到了水平分區(qū)的5種策略,通過sql語句給大家介紹的非常詳細(xì),需要的朋友可以參考下
    2021-12-12
  • 在SQL中對同一個字段不同值,進行數(shù)據(jù)統(tǒng)計操作

    在SQL中對同一個字段不同值,進行數(shù)據(jù)統(tǒng)計操作

    這篇文章主要介紹了在SQL中對同一個字段不同值,進行數(shù)據(jù)統(tǒng)計操作,具有很好的參考價值,希望對大家有所幫助。一起跟隨小編過來看看吧
    2020-10-10
  • mysql 8.0.15 安裝配置方法圖文教程(Windows10 X64)

    mysql 8.0.15 安裝配置方法圖文教程(Windows10 X64)

    這篇文章主要為大家詳細(xì)介紹了Windows10 X64 mysql 8.0.15 安裝配置方法圖文教程,具有一定的參考價值,感興趣的小伙伴們可以參考一下
    2019-03-03
  • MySQL8新特性:自增主鍵的持久化詳解

    MySQL8新特性:自增主鍵的持久化詳解

    MySQL8.0 GA版本發(fā)布了,展現(xiàn)了眾多新特性,下面這篇文章主要給大家介紹了關(guān)于MySQL8新特性:自增主鍵的持久化的相關(guān)資料,文中通過示例代碼介紹的非常詳細(xì),需要的朋友可以參考借鑒,下面隨著小編來一起學(xué)習(xí)學(xué)習(xí)吧
    2018-07-07

最新評論