亚洲乱码中文字幕综合,中国熟女仑乱hd,亚洲精品乱拍国产一区二区三区,一本大道卡一卡二卡三乱码全集资源,又粗又黄又硬又爽的免费视频

MySql?字符集不同導致?left?join?慢查詢的問題解決

 更新時間:2024年05月11日 11:51:46   作者:魚蠻子9527  
當兩個表的字符集不一樣,在使用字符型字段進行表連接查詢時,就需要特別注意下查詢耗時是否符合預期,本文主要介紹了MySql?字符集不同導致?left?join?慢查詢的問題解決,感興趣的可以了解一下

在 MySql 建表時候一般會指定字符集,大多數(shù)情況下為了更好的兼容性無腦選了 utf8mb4。但是有時會因為選錯,或歷史遺留問題,導致使用了 utf8 字符集。當兩個表的字符集不一樣,在使用字符型字段進行表連接查詢時,就需要特別注意下查詢耗時是否符合預期。

有次使用 left join 寫一個 SQL,發(fā)現(xiàn)用時明顯超過預期,經(jīng)過一頓折騰才發(fā)現(xiàn)是兩個表字符集不一樣,特此記錄一下。

問題分析

mysql> SELECT COUNT( *) from app_bind_rel t left join app_config_control_sn p on t.host_sn = p.host_sn ;
+-----------+
| COUNT( *) |
+-----------+
|     13447 |
+-----------+
1 row in set (0.89 sec)

例如上面的 SQL,左表 1W 條數(shù)據(jù),右表 400 多條數(shù)據(jù),在 host_sn 字段上都有索引,查詢竟然用了近 900ms,怎么會這么慢?

mysql> explain SELECT COUNT( *) from app_bind_rel t left join app_config_control_sn p on t.host_sn = p.host_sn ;
+----+-------------+-------+------------+-------+---------------+-------------+---------+------+-------+----------+-----------------------------------------------------------------+
| id | select_type | table | partitions | type  | possible_keys | key         | key_len | ref  | rows  | filtered | Extra                                                           |
+----+-------------+-------+------------+-------+---------------+-------------+---------+------+-------+----------+-----------------------------------------------------------------+
|  1 | SIMPLE      | t     | NULL       | index | NULL          | idx_host_sn | 122     | NULL | 10791 |   100.00 | Using index                                                     |
|  1 | SIMPLE      | p     | NULL       | index | NULL          | idx_host_sn | 152     | NULL |   457 |   100.00 | Using where; Using index; Using join buffer (Block Nested Loop) |
+----+-------------+-------+------------+-------+---------------+-------------+---------+------+-------+----------+-----------------------------------------------------------------+
2 rows in set, 1 warning (0.00 sec)

查看下執(zhí)行計劃,的確是使用了索引,但是細看 Extra 列發(fā)現(xiàn)較正常的連表查詢多了“Using join buffer (Block Nested Loop)”這一信息,這個具體是什么意思我們后面再說。
然后我們再看下詳細的執(zhí)行計劃,使用 explain formart=json。

{
  "query_block": {
    "select_id": 1,
    "cost_info": {
      "query_cost": "988640.52"
    },
    "nested_loop": [
      {
        "table": {
          "table_name": "t",
          "access_type": "index",
          "key": "idx_host_sn",
          "used_key_parts": [
            "host_sn"
          ],
          "key_length": "122",
          "rows_examined_per_scan": 10791,
          "rows_produced_per_join": 10791,
          "filtered": "100.00",
          "using_index": true,
          "cost_info": {
            "read_cost": "161.00",
            "eval_cost": "2158.20",
            "prefix_cost": "2319.20",
            "data_read_per_join": "2M"
          },
          "used_columns": [
            "host_sn"
          ]
        }
      },
      {
        "table": {
          "table_name": "p",
          "access_type": "index",
          "key": "idx_host_sn",
          "used_key_parts": [
            "host_sn"
          ],
          "key_length": "152",
          "rows_examined_per_scan": 457,
          "rows_produced_per_join": 4931487,
          "filtered": "100.00",
          "using_index": true,
          "using_join_buffer": "Block Nested Loop",
          "cost_info": {
            "read_cost": "23.92",
            "eval_cost": "986297.40",
            "prefix_cost": "988640.52",
            "data_read_per_join": "865M"
          },
          "used_columns": [
            "host_sn"
          ],
          "attached_condition": "<if>(is_not_null_compl(p), (`db0`.`t`.`host_sn` = convert(`db0`.`p`.`host_sn` using utf8mb4)), true)"
        }
      }
    ]
  }
}

特別需要關注的是這一對 KV

"attached_condition": "<if>(is_not_null_compl(p), (`collection_bullet_0000`.`t`.`host_sn` = convert(`collection_bullet_0000`.`p`.`host_sn` using utf8mb4)), true)"

看字面意思就是當 p 表不為空的時候,執(zhí)行表連接需要先將 p 表的 host_sn 字段轉變?yōu)?utf8mb4 字符集。我們應該都知道在表連接中使用了函數(shù)的話,是無法使用索引的。
所以再回到上面我看到的“Using join buffer (Block Nested Loop)”問題,來解釋下這是一個什么過程。

Nested-Loop Join

MySql 官網(wǎng)對 Nested-Loop Join 有做過解釋,其實做開發(fā)的同學看到名字就大體知道是啥,不就是循環(huán)嵌套嘛。

MySql  中分為 Nested-Loop Join 算法跟 Block Nested-Loop Join 算法。

例如,有如下三個表,t1、t2、t3 使用了這三種 join type。

Table   Join Type
t1      range
t2      ref
t3      ALL

當使用 Nested-Loop Join 算法時,其 join 過程如下所示,其實就是簡單的三層循環(huán)。

for each row in t1 matching range {
  for each row in t2 matching reference key {
    for each row in t3 {
      if row satisfies join conditions, send to client
    }
  }
}

Block Nested-Loop Join(BNL) 算法是對 Nested-Loop Join 算法的一種優(yōu)化。BNL 算法緩沖外部循環(huán)中讀取的行來減少內部循環(huán)中讀取表的次數(shù)。例如,將 10 行數(shù)據(jù)讀取到緩沖器中,并且將緩沖器傳遞到下一個循環(huán)內部,內部循環(huán)中讀取的每一行與緩沖器中的所有 10 行進行比較。這將使讀取內部表的次數(shù)減少一個數(shù)量級。

for each row in t1 matching range {
  for each row in t2 matching reference key {
    store used columns from t1, t2 in join buffer
    if buffer is full {
      for each row in t3 {
        for each t1, t2 combination in join buffer {
          if row satisfies join conditions, send to client
        }
      }
      empty join buffer
    }
  }
}

if buffer is not empty {
  for each row in t3 {
    for each t1, t2 combination in join buffer {
      if row satisfies join conditions, send to client
    }
  }
}

算法實現(xiàn)如上,只有當 “join buffer” 滿的時候才會觸發(fā) t3 表的讀取,如果 “join buffer” 的 size = 10 那么就可以減少 10 倍的 t3 表被讀取次數(shù),從內存中讀取數(shù)據(jù)的效率顯然要比從磁盤讀取的效率高的多。從而提升 join 的效率。

但其實再好的優(yōu)化畢竟也是嵌套循環(huán),做開發(fā)的同學應該都知道 O(N²) 的時間復雜度是無法接受的。這也是我們這個查詢這么慢的根因。

解決辦法

解決辦法其實很簡單,修改右表的字符集就可以解決。

在變更數(shù)據(jù)集之前我們先用 show table status 查看下當前表的狀態(tài)。

mysql> show table status like 'app_config_control_sn';
+-----------------------+--------+---------+------------+------+----------------+-------------+-----------------+--------------+-----------+----------------+---------------------+---------------------+------------+-----------------+----------+----------------+---------+
| Name                  | Engine | Version | Row_format | Rows | Avg_row_length | Data_length | Max_data_length | Index_length | Data_free | Auto_increment | Create_time         | Update_time         | Check_time | Collation       | Checksum | Create_options | Comment |
+-----------------------+--------+---------+------------+------+----------------+-------------+-----------------+--------------+-----------+----------------+---------------------+---------------------+------------+-----------------+----------+----------------+---------+
| app_config_control_sn | InnoDB |      10 | Dynamic    |  457 |            143 |       65536 |               0 |        32768 |         0 |           1041 | 2023-04-17 03:25:45 | 2023-04-17 03:27:24 | NULL       | utf8_general_ci |     NULL |                | SN      |
+-----------------------+--------+---------+------------+------+----------------+-------------+-----------------+--------------+-----------+----------------+---------------------+---------------------+------------+-----------------+----------+----------------+---------+
1 row in set (0.00 sec)

接著使用如下命令變更表的字符集。

mysql> ALTER TABLE app_config_control_sn CONVERT TO CHARACTER SET utf8mb4 COLLATE utf8mb4_general_ci;
Query OK, 457 rows affected (0.09 sec)
Records: 457  Duplicates: 0  Warnings: 0

再次使用 show table status 命令查看下表的狀態(tài)。

mysql> show table status like 'app_config_control_sn';
+-----------------------+--------+---------+------------+------+----------------+-------------+-----------------+--------------+-----------+----------------+---------------------+---------------------+------------+--------------------+----------+----------------+---------+
| Name                  | Engine | Version | Row_format | Rows | Avg_row_length | Data_length | Max_data_length | Index_length | Data_free | Auto_increment | Create_time         | Update_time         | Check_time | Collation          | Checksum | Create_options | Comment |
+-----------------------+--------+---------+------------+------+----------------+-------------+-----------------+--------------+-----------+----------------+---------------------+---------------------+------------+--------------------+----------+----------------+---------+
| app_config_control_sn | InnoDB |      10 | Dynamic    |  457 |            143 |       65536 |               0 |        32768 |         0 |           1041 | 2023-04-17 03:50:11 | 2023-04-17 03:50:11 | NULL       | utf8mb4_general_ci |     NULL |                | SN      |
+-----------------------+--------+---------+------------+------+----------------+-------------+-----------------+--------------+-----------+----------------+---------------------+---------------------+------------+--------------------+----------+----------------+---------+
1 row in set (0.01 sec)

可以看到表的字符集已經(jīng)發(fā)生了變化,那我們再次執(zhí)行開始的 SQL 及 explain 語句,確認下問題是否已經(jīng)解決。

mysql> SELECT COUNT( *) from app_bind_rel t left join app_config_control_sn p on t.host_sn = p.host_sn ;
+-----------+
| COUNT( *) |
+-----------+
|     13447 |
+-----------+
1 row in set (0.03 sec)

mysql> explain SELECT COUNT( *) from app_bind_rel t left join app_config_control_sn p on t.host_sn = p.host_sn ;
+----+-------------+-------+------------+-------+---------------+-------------+---------+---------------+-------+----------+--------------------------+
| id | select_type | table | partitions | type  | possible_keys | key         | key_len | ref           | rows  | filtered | Extra                    |
+----+-------------+-------+------------+-------+---------------+-------------+---------+---------------+-------+----------+--------------------------+
|  1 | SIMPLE      | t     | NULL       | index | NULL          | idx_host_sn | 122     | NULL          | 10791 |   100.00 | Using index              |
|  1 | SIMPLE      | p     | NULL       | ref   | idx_host_sn   | idx_host_sn | 202     | db0.t.host_sn |     2 |   100.00 | Using where; Using index |
+----+-------------+-------+------------+-------+---------------+-------------+---------+---------------+-------+----------+--------------------------+
2 rows in set, 1 warning (0.00 sec)

可以看到耗時已經(jīng)只需要 30ms 左右,這個就比較符合預期,而在執(zhí)行計劃中也不再會有“Using join buffer (Block Nested Loop)”信息。

其他

mysql> SELECT COUNT( *) from app_bind_rel t join app_config_control_sn p on t.host_sn = p.host_sn ;
+-----------+
| COUNT( *) |
+-----------+
|       730 |
+-----------+
1 row in set (0.01 sec)

在沒有變更字符集之前,當我們將 left join 修改為 join 的時候會發(fā)現(xiàn)耗時減少了 100 倍,只用了 10 ms,這是為什么呢?

mysql> explain SELECT COUNT( *) from app_bind_rel t join app_config_control_sn p on t.host_sn = p.host_sn ;
+----+-------------+-------+------------+-------+---------------+-------------+---------+------+------+----------+--------------------------+
| id | select_type | table | partitions | type  | possible_keys | key         | key_len | ref  | rows | filtered | Extra                    |
+----+-------------+-------+------------+-------+---------------+-------------+---------+------+------+----------+--------------------------+
|  1 | SIMPLE      | p     | NULL       | index | NULL          | idx_host_sn | 152     | NULL |  457 |   100.00 | Using index              |
|  1 | SIMPLE      | t     | NULL       | ref   | idx_host_sn   | idx_host_sn | 122     | func |    1 |   100.00 | Using where; Using index |
+----+-------------+-------+------------+-------+---------------+-------------+---------+------+------+----------+--------------------------+
2 rows in set, 1 warning (0.00 sec)

查看執(zhí)行計劃,發(fā)現(xiàn)使用 join 的時候不會有 “Using join buffer (Block Nested Loop)”。再細看執(zhí)行計劃,發(fā)現(xiàn)驅動表已經(jīng)由 t 表變?yōu)榱?p 表。

{
  "query_block": {
    "select_id": 1,
    "cost_info": {
      "query_cost": "643.80"
    },
    "nested_loop": [
      {
        "table": {
          "table_name": "p",
          "access_type": "index",
          "key": "idx_host_sn",
          "used_key_parts": [
            "host_sn"
          ],
          "key_length": "152",
          "rows_examined_per_scan": 457,
          "rows_produced_per_join": 457,
          "filtered": "100.00",
          "using_index": true,
          "cost_info": {
            "read_cost": "4.00",
            "eval_cost": "91.40",
            "prefix_cost": "95.40",
            "data_read_per_join": "82K"
          },
          "used_columns": [
            "host_sn"
          ]
        }
      },
      {
        "table": {
          "table_name": "t",
          "access_type": "ref",
          "possible_keys": [
            "idx_host_sn"
          ],
          "key": "idx_host_sn",
          "used_key_parts": [
            "host_sn"
          ],
          "key_length": "122",
          "ref": [
            "func"
          ],
          "rows_examined_per_scan": 1,
          "rows_produced_per_join": 457,
          "filtered": "100.00",
          "using_index": true,
          "cost_info": {
            "read_cost": "457.00",
            "eval_cost": "91.40",
            "prefix_cost": "643.80",
            "data_read_per_join": "117K"
          },
          "used_columns": [
            "host_sn"
          ],
          "attached_condition": "(`db0`.`t`.`host_sn` = convert(`db0`.`p`.`host_sn` using utf8mb4))"
        }
      }
    ]
  }
}

查看詳細的執(zhí)行計劃,可以看到

"attached_condition": "(`collection_bullet_0000`.`t`.`host_sn` = convert(`collection_bullet_0000`.`p`.`host_sn` using utf8mb4))"

這對 KV 依然是存在的,但是 "using_join_buffer": "Block Nested Loop" 已經(jīng)不存在了。這個其實主要是因為當 p 表變?yōu)轵寗颖淼臅r候,會先將自己的 host_sn 字段轉為 utf8mb4 字符集,再與 t 表進行關聯(lián)。t 表由于本來就是 utf8mb4 字符集且存在索引,就可以正常走數(shù)據(jù)庫索引了,所以查詢耗時也就大大降低。而使用 left join 時候,t 表作為驅動表是無法優(yōu)化改變的。

可見在表連接中即使使用了函數(shù)也不一定就沒法走索引,關鍵還是要看用法及明確處理過程。
記得剛學習數(shù)據(jù)庫的時候,老師還特別強調驅動表一定要寫在左邊,而隨著數(shù)據(jù)庫技術的不斷迭代發(fā)展,數(shù)據(jù)庫已經(jīng)能更智能的自動幫我們優(yōu)化處理過程,之前很多的數(shù)據(jù)庫規(guī)則也不需要了。

到此這篇關于MySql 字符集不同導致 left join 慢查詢的問題解決的文章就介紹到這了,更多相關MySql  left join 慢查詢內容請搜索腳本之家以前的文章或繼續(xù)瀏覽下面的相關文章希望大家以后多多支持腳本之家!

相關文章

最新評論