亚洲乱码中文字幕综合,中国熟女仑乱hd,亚洲精品乱拍国产一区二区三区,一本大道卡一卡二卡三乱码全集资源,又粗又黄又硬又爽的免费视频

20招讓你的Python飛起來!

 更新時(shí)間:2016年09月27日 16:18:04   作者:開元  
20招讓你的 Python飛起來!這篇文章主要為大家詳細(xì)介紹了Python性能優(yōu)化的20條建議,感興趣的小伙伴們可以參考一下

今天分享的這篇文章,文字不多,代碼為主。絕對干貨,童叟無欺,主要分享了提升 Python 性能的 20 個(gè)技巧,教你如何告別慢Python。原文作者 開元,全棧程序員,使用 Python, Java, PHP和C++。

1. 優(yōu)化算法時(shí)間復(fù)雜度

算法的時(shí)間復(fù)雜度對程序的執(zhí)行效率影響最大,在Python中可以通過選擇合適的數(shù)據(jù)結(jié)構(gòu)來優(yōu)化時(shí)間復(fù)雜度,如list和set查找某一個(gè)元素的時(shí)間復(fù)雜度分別是O(n)和O(1)。不同的場景有不同的優(yōu)化方式,總得來說,一般有分治,分支界限,貪心,動態(tài)規(guī)劃等思想。

2. 減少冗余數(shù)據(jù)

如用上三角或下三角的方式去保存一個(gè)大的對稱矩陣。在0元素占大多數(shù)的矩陣?yán)锸褂孟∈杈仃嚤硎尽?/p>

3. 合理使用copy與deepcopy

對于dict和list等數(shù)據(jù)結(jié)構(gòu)的對象,直接賦值使用的是引用的方式。而有些情況下需要復(fù)制整個(gè)對象,這時(shí)可以使用copy包里的copy和deepcopy,這兩個(gè)函數(shù)的不同之處在于后者是遞歸復(fù)制的。效率也不一樣:(以下程序在ipython中運(yùn)行)

import copy
a = range(100000)
%timeit -n 10 copy.copy(a) # 運(yùn)行10次 copy.copy(a)

%timeit -n 10 copy.deepcopy(a)
10 loops, best of 3: 1.55 ms per loop
10 loops, best of 3: 151 ms per loop

timeit后面的-n表示運(yùn)行的次數(shù),后兩行對應(yīng)的是兩個(gè)timeit的輸出,下同。由此可見后者慢一個(gè)數(shù)量級。

4. 使用dict或set查找元素

Python dict和set都是使用hash表來實(shí)現(xiàn)(類似c++11標(biāo)準(zhǔn)庫中unordered_map),查找元素的時(shí)間復(fù)雜度是O(1)。

a = range(1000)
s = set(a)
d = dict((i,1) for i in a)
%timeit -n 10000 100 in d
%timeit -n 10000 100 in s
10000 loops, best of 3: 43.5 ns per loop
10000 loops, best of 3: 49.6 ns per loop

dict的效率略高(占用的空間也多一些)。

5. 合理使用生成器(generator)和yield

%timeit -n 100 a = (i for i in range(100000))
%timeit -n 100 b = [i for i in range(100000)]
100 loops, best of 3: 1.54 ms per loop
100 loops, best of 3: 4.56 ms per loop

使用()得到的是一個(gè)generator對象,所需要的內(nèi)存空間與列表的大小無關(guān),所以效率會高一些。在具體應(yīng)用上,比如set(i for i in range(100000))會比set([i for i in range(100000)])快。

但是對于需要循環(huán)遍歷的情況:

%timeit -n 10 for x in (i for i in range(100000)): pass
%timeit -n 10 for x in [i for i in range(100000)]: pass

10 loops, best of 3: 6.51 ms per loop
10 loops, best of 3: 5.54 ms per loop

后者的效率反而更高,但是如果循環(huán)里有break,用generator的好處是顯而易見的。yield也是用于創(chuàng)建generator:

def yield_func(ls):
  for i in ls:
    yield i+1

def not_yield_func(ls):
  return [i+1 for i in ls]

ls = range(1000000)
%timeit -n 10 for i in yield_func(ls):pass

%timeit -n 10 for i in not_yield_func(ls):pass

10 loops, best of 3: 63.8 ms per loop
10 loops, best of 3: 62.9 ms per loop

對于內(nèi)存不是非常大的list,可以直接返回一個(gè)list,但是可讀性yield更佳(人個(gè)喜好)。
python2.x內(nèi)置generator功能的有xrange函數(shù)、itertools包等。

6. 優(yōu)化循環(huán)

循環(huán)之外能做的事不要放在循環(huán)內(nèi),比如下面的優(yōu)化可以快一倍:

a = range(10000)
size_a = len(a)
%timeit -n 1000 for i in a: k = len(a)
%timeit -n 1000 for i in a: k = size_a
1000 loops, best of 3: 569 µs per loop
1000 loops, best of 3: 256 µs per loop

7. 優(yōu)化包含多個(gè)判斷表達(dá)式的順序

對于and,應(yīng)該把滿足條件少的放在前面,對于or,把滿足條件多的放在前面。如:

a = range(2000) 
%timeit -n 100 [i for i in a if 10 < i < 20 or 1000 < i < 2000]
%timeit -n 100 [i for i in a if 1000 < i < 2000 or 100 < i < 20]   
%timeit -n 100 [i for i in a if i % 2 == 0 and i > 1900]
%timeit -n 100 [i for i in a if i > 1900 and i % 2 == 0]
100 loops, best of 3: 287 µs per loop
100 loops, best of 3: 214 µs per loop
100 loops, best of 3: 128 µs per loop
100 loops, best of 3: 56.1 µs per loop

8. 使用join合并迭代器中的字符串

In [1]: %%timeit
  ...: s = ''
  ...: for i in a:
  ...:     s += i
  ...:
10000 loops, best of 3: 59.8 µs per loop

In [2]: %%timeit
s = ''.join(a)
  ...:
100000 loops, best of 3: 11.8 µs per loop

join對于累加的方式,有大約5倍的提升。

9. 選擇合適的格式化字符方式

s1, s2 = 'ax', 'bx'

%timeit -n 100000 'abc%s%s' % (s1, s2)
%timeit -n 100000 'abc{0}{1}'.format(s1, s2)
%timeit -n 100000 'abc' + s1 + s2
100000 loops, best of 3: 183 ns per loop
100000 loops, best of 3: 169 ns per loop
100000 loops, best of 3: 103 ns per loop

三種情況中,%的方式是最慢的,但是三者的差距并不大(都非??欤?。(個(gè)人覺得%的可讀性最好)

10. 不借助中間變量交換兩個(gè)變量的值

In [3]: %%timeit -n 10000
  a,b=1,2
  ....: c=a;a=b;b=c;
  ....:
10000 loops, best of 3: 172 ns per loop

In [4]: %%timeit -n 10000

a,b=1,2a,b=b,a
  ....:
10000 loops, best of 3: 86 ns per loop

使用a,b=b,a而不是c=a;a=b;b=c;來交換a,b的值,可以快1倍以上。

11. 使用if is

a = range(10000)
%timeit -n 100 [i for i in a if i == True]
%timeit -n 100 [i for i in a if i is True]
100 loops, best of 3: 531 µs per loop
100 loops, best of 3: 362 µs per loop

使用 if is True 比 if == True 將近快一倍。

12. 使用級聯(lián)比較x < y < z

x, y, z = 1,2,3

%timeit -n 1000000 if x < y < z:pass
%timeit -n 1000000 if x < y and y < z:pass

1000000 loops, best of 3: 101 ns per loop
1000000 loops, best of 3: 121 ns per loop

x < y < z效率略高,而且可讀性更好。

13. while 1 比 while True 更快

def while_1():
  n = 100000
  while 1:
    n -= 1
    if n <= 0: break

def while_true():
  n = 100000
  while True:
    n -= 1
    if n <= 0: break

m, n = 1000000, 1000000

%timeit -n 100 while_1()
%timeit -n 100 while_true()
100 loops, best of 3: 3.69 ms per loop
100 loops, best of 3: 5.61 ms per loop

while 1 比 while true快很多,原因是在python2.x中,True是一個(gè)全局變量,而非關(guān)鍵字。

14. 使用**而不是pow

%timeit -n 10000 c = pow(2,20)
%timeit -n 10000 c = 2**20

10000 loops, best of 3: 284 ns per loop
10000 loops, best of 3: 16.9 ns per loop

**就是快10倍以上!

15. 使用 cProfile, cStringIO 和 cPickle等用c實(shí)現(xiàn)相同功能(分別對應(yīng)profile, StringIO, pickle)的包

import cPickle
import pickle
a = range(10000)
%timeit -n 100 x = cPickle.dumps(a)
%timeit -n 100 x = pickle.dumps(a)
100 loops, best of 3: 1.58 ms per loop
100 loops, best of 3: 17 ms per loop

由c實(shí)現(xiàn)的包,速度快10倍以上!

16. 使用最佳的反序列化方式

下面比較了eval, cPickle, json方式三種對相應(yīng)字符串反序列化的效率:

import json
import cPickle
a = range(10000)
s1 = str(a)
s2 = cPickle.dumps(a)
s3 = json.dumps(a)
%timeit -n 100 x = eval(s1)
%timeit -n 100 x = cPickle.loads(s2)
%timeit -n 100 x = json.loads(s3)
100 loops, best of 3: 16.8 ms per loop
100 loops, best of 3: 2.02 ms per loop
100 loops, best of 3: 798 µs per loop

可見json比cPickle快近3倍,比eval快20多倍。

17. 使用C擴(kuò)展(Extension)

目前主要有CPython(python最常見的實(shí)現(xiàn)的方式)原生API, ctypes,Cython,cffi三種方式,它們的作用是使得Python程序可以調(diào)用由C編譯成的動態(tài)鏈接庫,其特點(diǎn)分別是:

CPython原生API: 通過引入Python.h頭文件,對應(yīng)的C程序中可以直接使用Python的數(shù)據(jù)結(jié)構(gòu)。實(shí)現(xiàn)過程相對繁瑣,但是有比較大的適用范圍。
ctypes: 通常用于封裝(wrap)C程序,讓純Python程序調(diào)用動態(tài)鏈接庫(Windows中的dll或Unix中的so文件)中的函數(shù)。如果想要在python中使用已經(jīng)有C類庫,使用ctypes是很好的選擇,有一些基準(zhǔn)測試下,python2+ctypes是性能最好的方式。
Cython: Cython是CPython的超集,用于簡化編寫C擴(kuò)展的過程。Cython的優(yōu)點(diǎn)是語法簡潔,可以很好地兼容numpy等包含大量C擴(kuò)展的庫。Cython的使得場景一般是針對項(xiàng)目中某個(gè)算法或過程的優(yōu)化。在某些測試中,可以有幾百倍的性能提升。
cffi: cffi的就是ctypes在pypy(詳見下文)中的實(shí)現(xiàn),同進(jìn)也兼容CPython。cffi提供了在python使用C類庫的方式,可以直接在python代碼中編寫C代碼,同時(shí)支持鏈接到已有的C類庫。
使用這些優(yōu)化方式一般是針對已有項(xiàng)目性能瓶頸模塊的優(yōu)化,可以在少量改動原有項(xiàng)目的情況下大幅度地提高整個(gè)程序的運(yùn)行效率。

18. 并行編程

因?yàn)镚IL的存在,Python很難充分利用多核CPU的優(yōu)勢。但是,可以通過內(nèi)置的模塊multiprocessing實(shí)現(xiàn)下面幾種并行模式:

多進(jìn)程:對于CPU密集型的程序,可以使用multiprocessing的Process,Pool等封裝好的類,通過多進(jìn)程的方式實(shí)現(xiàn)并行計(jì)算。但是因?yàn)檫M(jìn)程中的通信成本比較大,對于進(jìn)程之間需要大量數(shù)據(jù)交互的程序效率未必有大的提高。
多線程:對于IO密集型的程序,multiprocessing.dummy模塊使用multiprocessing的接口封裝threading,使得多線程編程也變得非常輕松(比如可以使用Pool的map接口,簡潔高效)。
分布式:multiprocessing中的Managers類提供了可以在不同進(jìn)程之共享數(shù)據(jù)的方式,可以在此基礎(chǔ)上開發(fā)出分布式的程序。
不同的業(yè)務(wù)場景可以選擇其中的一種或幾種的組合實(shí)現(xiàn)程序性能的優(yōu)化。

19. 終級大殺器:PyPy

PyPy是用RPython(CPython的子集)實(shí)現(xiàn)的Python,根據(jù)官網(wǎng)的基準(zhǔn)測試數(shù)據(jù),它比CPython實(shí)現(xiàn)的Python要快6倍以上。快的原因是使用了Just-in-Time(JIT)編譯器,即動態(tài)編譯器,與靜態(tài)編譯器(如gcc,javac等)不同,它是利用程序運(yùn)行的過程的數(shù)據(jù)進(jìn)行優(yōu)化。由于歷史原因,目前pypy中還保留著GIL,不過正在進(jìn)行的STM項(xiàng)目試圖將PyPy變成沒有GIL的Python。

如果python程序中含有C擴(kuò)展(非cffi的方式),JIT的優(yōu)化效果會大打折扣,甚至比CPython慢(比Numpy)。所以在PyPy中最好用純Python或使用cffi擴(kuò)展。

隨著STM,Numpy等項(xiàng)目的完善,相信PyPy將會替代CPython。

20. 使用性能分析工具

除了上面在ipython使用到的timeit模塊,還有cProfile。cProfile的使用方式也非常簡單:python -m cProfile filename.py,filename.py 是要運(yùn)行程序的文件名,可以在標(biāo)準(zhǔn)輸出中看到每一個(gè)函數(shù)被調(diào)用的次數(shù)和運(yùn)行的時(shí)間,從而找到程序的性能瓶頸,然后可以有針對性地優(yōu)化。

以上就是本文的全部內(nèi)容,希望對大家的學(xué)習(xí)有所幫助,也希望大家多多支持腳本之家。

相關(guān)文章

  • Python定時(shí)執(zhí)行之Timer用法示例

    Python定時(shí)執(zhí)行之Timer用法示例

    這篇文章主要介紹了Python定時(shí)執(zhí)行之Timer用法,實(shí)例分析了Timer模塊的原理及相關(guān)使用技巧,需要的朋友可以參考下
    2015-05-05
  • Python設(shè)計(jì)模式中的狀態(tài)模式你了解嗎

    Python設(shè)計(jì)模式中的狀態(tài)模式你了解嗎

    這篇文章主要為大家詳細(xì)介紹了Python設(shè)計(jì)模式中的狀態(tài)模式,文中示例代碼介紹的非常詳細(xì),具有一定的參考價(jià)值,感興趣的小伙伴們可以參考一下,希望能夠給你帶來幫助
    2022-02-02
  • Python字典操作簡明總結(jié)

    Python字典操作簡明總結(jié)

    這篇文章主要介紹了Python字典操作簡明總結(jié),本文總結(jié)了創(chuàng)建字典 、創(chuàng)建一個(gè)"默認(rèn)"字典、遍歷字典、獲得value值、成員操作符:in或not in 、更新字典、刪除字典等常用操作,需要的朋友可以參考下
    2015-04-04
  • Python中使用Opencv開發(fā)停車位計(jì)數(shù)器功能

    Python中使用Opencv開發(fā)停車位計(jì)數(shù)器功能

    這篇文章主要介紹了Python中使用Opencv開發(fā)停車位計(jì)數(shù)器,本教程最好的一點(diǎn)就是我們將使用基本的圖像處理技術(shù)來解決這個(gè)問題,沒有使用機(jī)器學(xué)習(xí)、深度學(xué)習(xí)進(jìn)行訓(xùn)練來識別,感興趣的朋友跟隨小編一起看看吧
    2022-04-04
  • Python實(shí)現(xiàn)多個(gè)圓和圓中圓的檢測

    Python實(shí)現(xiàn)多個(gè)圓和圓中圓的檢測

    這篇文章主要為大家詳細(xì)介紹了Python如何實(shí)現(xiàn)多個(gè)圓檢測和圓中圓的檢測,文中的實(shí)現(xiàn)方法講解詳細(xì),具有一定的借鑒價(jià)值,需要的可以參考一下
    2022-11-11
  • Sanic框架應(yīng)用部署方法詳解

    Sanic框架應(yīng)用部署方法詳解

    這篇文章主要介紹了Sanic框架應(yīng)用部署方法,結(jié)合實(shí)例形式分析了Sanic框架應(yīng)用部署的具體流程、相關(guān)命令與使用技巧,并附帶說明了Gunicorn的配置方法,需要的朋友可以參考下
    2018-07-07
  • Django-celery-beat動態(tài)添加周期性任務(wù)實(shí)現(xiàn)過程解析

    Django-celery-beat動態(tài)添加周期性任務(wù)實(shí)現(xiàn)過程解析

    這篇文章主要介紹了Django-celery-beat動態(tài)添加周期性任務(wù)實(shí)現(xiàn)過程解析,文中通過示例代碼介紹的非常詳細(xì),對大家的學(xué)習(xí)或者工作具有一定的參考學(xué)習(xí)價(jià)值,需要的朋友可以參考下
    2020-11-11
  • 對Pytorch中nn.ModuleList 和 nn.Sequential詳解

    對Pytorch中nn.ModuleList 和 nn.Sequential詳解

    今天小編就為大家分享一篇對Pytorch中nn.ModuleList 和 nn.Sequential詳解,具有很好的參考價(jià)值,希望對大家有所幫助。一起跟隨小編過來看看吧
    2019-08-08
  • Python實(shí)現(xiàn)哲學(xué)家就餐問題實(shí)例代碼

    Python實(shí)現(xiàn)哲學(xué)家就餐問題實(shí)例代碼

    這篇文章主要給大家介紹了關(guān)于Python實(shí)現(xiàn)哲學(xué)家就餐問題的相關(guān)資料,文中通過示例代碼介紹的非常詳細(xì),對大家的學(xué)習(xí)或者工作具有一定的參考學(xué)習(xí)價(jià)值,需要的朋友們下面隨著小編來一起學(xué)習(xí)學(xué)習(xí)吧
    2020-11-11
  • tensorflow創(chuàng)建變量以及根據(jù)名稱查找變量

    tensorflow創(chuàng)建變量以及根據(jù)名稱查找變量

    這篇文章主要為大家詳細(xì)介紹了tensorflow創(chuàng)建變量以及根據(jù)名稱查找變量,具有一定的參考價(jià)值,感興趣的小伙伴們可以參考一下
    2018-03-03

最新評論