JavaScript實現(xiàn)多種排序算法
筆試面試經(jīng)常涉及各種算法,本文簡要介紹常用的一些算法,并用JavaScript實現(xiàn)。
1、插入排序
1)算法簡介
插入排序(Insertion-Sort)的算法描述是一種簡單直觀的排序算法。它的工作原理是通過構(gòu)建有序序列,對于未排序數(shù)據(jù),在已排序序列中從后向前掃描,找到相應位置并插入。插入排序在實現(xiàn)上,通常采用in-place排序(即只需用到O(1)的額外空間的排序),因而在從后向前掃描過程中,需要反復把已排序元素逐步向后挪位,為最新元素提供插入空間。
2)算法描述和實現(xiàn)
一般來說,插入排序都采用in-place在數(shù)組上實現(xiàn)。具體算法描述如下:
從第一個元素開始,該元素可以認為已經(jīng)被排序;
取出下一個元素,在已經(jīng)排序的元素序列中從后向前掃描;
如果該元素(已排序)大于新元素,將該元素移到下一位置;
重復步驟3,直到找到已排序的元素小于或者等于新元素的位置;
將新元素插入到該位置后;
重復步驟2~5。
JavaScript代碼實現(xiàn):
function insertionSort(array) { if (Object.prototype.toString.call(array).slice(8, -1) === 'Array') { for (var i = 1; i < array.length; i++) { var key = array[i]; var j = i - 1; while (j >= 0 && array[j] > key) { array[j + 1] = array[j]; j--; } array[j + 1] = key; } return array; } else { return 'array is not an Array!'; } }
3)算法分析
最佳情況:輸入數(shù)組按升序排列。T(n) = O(n)
最壞情況:輸入數(shù)組按降序排列。T(n) = O(n2)
平均情況:T(n) = O(n2)
二、二分插入排序
1)算法簡介
二分插入(Binary-insert-sort)排序是一種在直接插入排序算法上進行小改動的排序算法。其與直接插入排序算法最大的區(qū)別在于查找插入位置時使用的是二分查找的方式,在速度上有一定提升。
2)算法描述和實現(xiàn)
一般來說,插入排序都采用in-place在數(shù)組上實現(xiàn)。具體算法描述如下:
從第一個元素開始,該元素可以認為已經(jīng)被排序;
取出下一個元素,在已經(jīng)排序的元素序列中二分查找到第一個比它大的數(shù)的位置;
將新元素插入到該位置后;
重復上述兩步。
JavaScript代碼實現(xiàn):
function binaryInsertionSort(array) { if (Object.prototype.toString.call(array).slice(8, -1) === 'Array') { for (var i = 1; i < array.length; i++) { var key = array[i], left = 0, right = i - 1; while (left <= right) { var middle = parseInt((left + right) / 2); if (key < array[middle]) { right = middle - 1; } else { left = middle + 1; } } for (var j = i - 1; j >= left; j--) { array[j + 1] = array[j]; } array[left] = key; } return array; } else { return 'array is not an Array!'; } }
3)算法分析
最佳情況:T(n) = O(nlogn)
最差情況:T(n) = O(n2)
平均情況:T(n) = O(n2)
三、選擇排序
1)算法簡介
選擇排序(Selection-sort)是一種簡單直觀的排序算法。它的工作原理:首先在未排序序列中找到最?。ù螅┰?,存放到排序序列的起始位置,然后,再從剩余未排序元素中繼續(xù)尋找最?。ù螅┰?,然后放到已排序序列的末尾。以此類推,直到所有元素均排序完畢。
2)算法描述和實現(xiàn)
n個記錄的直接選擇排序可經(jīng)過n-1趟直接選擇排序得到有序結(jié)果。具體算法描述如下:
初始狀態(tài):無序區(qū)為R[1..n],有序區(qū)為空;
第i趟排序(i=1,2,3…n-1)開始時,當前有序區(qū)和無序區(qū)分別為R[1..i-1]和R(i..n)。該趟排序從當前無序區(qū)中選出關(guān)鍵字最小的記錄 R[k],將它與無序區(qū)的第1個記錄R交換,使R[1..i]和R[i+1..n)分別變?yōu)橛涗泜€數(shù)增加1個的新有序區(qū)和記錄個數(shù)減少1個的新無序區(qū);
n-1趟結(jié)束,數(shù)組有序化了。
JavaScript代碼實現(xiàn):
function selectionSort(array) { if (Object.prototype.toString.call(array).slice(8, -1) === 'Array') { var len = array.length, temp; for (var i = 0; i < len - 1; i++) { var min = array[i]; for (var j = i + 1; j < len; j++) { if (array[j] < min) { temp = min; min = array[j]; array[j] = temp; } } array[i] = min; } return array; } else { return 'array is not an Array!'; } }
3)算法分析
最佳情況:T(n) = O(n2)
最差情況:T(n) = O(n2)
平均情況:T(n) = O(n2)
四、冒泡排序
1)算法簡介
冒泡排序是一種簡單的排序算法。它重復地走訪過要排序的數(shù)列,一次比較兩個元素,如果它們的順序錯誤就把它們交換過來。走訪數(shù)列的工作是重復地進行直到?jīng)]有再需要交換,也就是說該數(shù)列已經(jīng)排序完成。這個算法的名字由來是因為越小的元素會經(jīng)由交換慢慢“浮”到數(shù)列的頂端。
2)算法描述和實現(xiàn)
具體算法描述如下:
比較相鄰的元素。如果第一個比第二個大,就交換它們兩個;
對每一對相鄰元素作同樣的工作,從開始第一對到結(jié)尾的最后一對,這樣在最后的元素應該會是最大的數(shù);
針對所有的元素重復以上的步驟,除了最后一個;
重復步驟1~3,直到排序完成。
JavaScript代碼實現(xiàn):
function bubbleSort(array) { if (Object.prototype.toString.call(array).slice(8, -1) === 'Array') { var len = array.length, temp; for (var i = 0; i < len - 1; i++) { for (var j = len - 1; j >= i; j--) { if (array[j] < array[j - 1]) { temp = array[j]; array[j] = array[j - 1]; array[j - 1] = temp; } } } return array; } else { return 'array is not an Array!'; } }
3)算法分析
最佳情況:T(n) = O(n)
最差情況:T(n) = O(n2)
平均情況:T(n) = O(n2)
五、快速排序
1)算法簡介
快速排序的基本思想:通過一趟排序?qū)⒋庞涗浄指舫瑟毩⒌膬刹糠?,其中一部分記錄的關(guān)鍵字均比另一部分的關(guān)鍵字小,則可分別對這兩部分記錄繼續(xù)進行排序,以達到整個序列有序。
2)算法描述和實現(xiàn)
快速排序使用分治法來把一個串(list)分為兩個子串(sub-lists)。具體算法描述如下:
從數(shù)列中挑出一個元素,稱為 "基準"(pivot);
重新排序數(shù)列,所有元素比基準值小的擺放在基準前面,所有元素比基準值大的擺在基準的后面(相同的數(shù)可以到任一邊)。在這個分區(qū)退出之后,該基準就處于數(shù)列的中間位置。這個稱為分區(qū)(partition)操作;
遞歸地(recursive)把小于基準值元素的子數(shù)列和大于基準值元素的子數(shù)列排序。
JavaScript代碼實現(xiàn):
//方法一 function quickSort(array, left, right) { if (Object.prototype.toString.call(array).slice(8, -1) === 'Array' && typeof left === 'number' && typeof right === 'number') { if (left < right) { var x = array[right], i = left - 1, temp; for (var j = left; j <= right; j++) { if (array[j] <= x) { i++; temp = array[i]; array[i] = array[j]; array[j] = temp; } } quickSort(array, left, i - 1); quickSort(array, i + 1, right); }; } else { return 'array is not an Array or left or right is not a number!'; } } var aaa = [3, 5, 2, 9, 1]; quickSort(aaa, 0, aaa.length - 1); console.log(aaa); //方法二 var quickSort = function(arr) { if (arr.length <= 1) { return arr; } var pivotIndex = Math.floor(arr.length / 2); var pivot = arr.splice(pivotIndex, 1)[0]; var left = []; var right = []; for (var i = 0; i < arr.length; i++){ if (arr[i] < pivot) { left.push(arr[i]); } else { right.push(arr[i]); } } return quickSort(left).concat([pivot], quickSort(right)); };
3)算法分析
最佳情況:T(n) = O(nlogn)
最差情況:T(n) = O(n2)
平均情況:T(n) = O(nlogn)
六、堆排序
1)算法簡介
堆排序(Heapsort)是指利用堆這種數(shù)據(jù)結(jié)構(gòu)所設(shè)計的一種排序算法。堆積是一個近似完全二叉樹的結(jié)構(gòu),并同時滿足堆積的性質(zhì):即子結(jié)點的鍵值或索引總是小于(或者大于)它的父節(jié)點。
2)算法描述和實現(xiàn)
具體算法描述如下:
將初始待排序關(guān)鍵字序列(R1,R2....Rn)構(gòu)建成大頂堆,此堆為初始的無序區(qū);
將堆頂元素R[1]與最后一個元素R[n]交換,此時得到新的無序區(qū)(R1,R2,......Rn-1)和新的有序區(qū)(Rn),且滿足R[1,2...n-1]<=R[n];
由于交換后新的堆頂R[1]可能違反堆的性質(zhì),因此需要對當前無序區(qū)(R1,R2,......Rn-1)調(diào)整為新堆,然后再次將R[1]與無序區(qū)最后一個元素交換,得到新的無序區(qū)(R1,R2....Rn-2)和新的有序區(qū)(Rn-1,Rn)。不斷重復此過程直到有序區(qū)的元素個數(shù)為n-1,則整個排序過程完成。
JavaScript代碼實現(xiàn):
/*方法說明:堆排序 @param array 待排序數(shù)組*/ function heapSort(array) { if (Object.prototype.toString.call(array).slice(8, -1) === 'Array') { //建堆 var heapSize = array.length, temp; for (var i = Math.floor(heapSize / 2); i >= 0; i--) { heapify(array, i, heapSize); } //堆排序 for (var j = heapSize - 1; j >= 1; j--) { temp = array[0]; array[0] = array[j]; array[j] = temp; heapify(array, 0, --heapSize); } } else { return 'array is not an Array!'; } } /*方法說明:維護堆的性質(zhì) @param arr 數(shù)組 @param x 數(shù)組下標 @param len 堆大小*/ function heapify(arr, x, len) { if (Object.prototype.toString.call(arr).slice(8, -1) === 'Array' && typeof x === 'number') { var l = 2 * x, r = 2 * x + 1, largest = x, temp; if (l < len && arr[l] > arr[largest]) { largest = l; } if (r < len && arr[r] > arr[largest]) { largest = r; } if (largest != x) { temp = arr[x]; arr[x] = arr[largest]; arr[largest] = temp; heapify(arr, largest, len); } } else { return 'arr is not an Array or x is not a number!'; } }
3)算法分析
最佳情況:T(n) = O(nlogn)
最差情況:T(n) = O(nlogn)
平均情況:T(n) = O(nlogn)
七、歸并排序
1)算法簡介
歸并排序是建立在歸并操作上的一種有效的排序算法。該算法是采用分治法(Divide and Conquer)的一個非常典型的應用。歸并排序是一種穩(wěn)定的排序方法。將已有序的子序列合并,得到完全有序的序列;即先使每個子序列有序,再使子序列段間有序。若將兩個有序表合并成一個有序表,稱為2-路歸并。
2)算法描述和實現(xiàn)
具體算法描述如下:
把長度為n的輸入序列分成兩個長度為n/2的子序列;
對這兩個子序列分別采用歸并排序;
將兩個排序好的子序列合并成一個最終的排序序列。
JavaScript代碼實現(xiàn):
function mergeSort(array, p, r) { if (p < r) { var q = Math.floor((p + r) / 2); mergeSort(array, p, q); mergeSort(array, q + 1, r); merge(array, p, q, r); } } function merge(array, p, q, r) { var n1 = q - p + 1, n2 = r - q, left = [], right = [], m = n = 0; for (var i = 0; i < n1; i++) { left[i] = array[p + i]; } for (var j = 0; j < n2; j++) { right[j] = array[q + 1 + j]; } left[n1] = right[n2] = Number.MAX_VALUE; for (var k = p; k <= r; k++) { if (left[m] <= right[n]) { array[k] = left[m]; m++; } else { array[k] = right[n]; n++; } } }
3)算法分析
最佳情況:T(n) = O(n)
最差情況:T(n) = O(nlogn)
平均情況:T(n) = O(nlogn)
八、桶排序
1)算法簡介
桶排序 (Bucket sort)的工作的原理:假設(shè)輸入數(shù)據(jù)服從均勻分布,將數(shù)據(jù)分到有限數(shù)量的桶里,每個桶再分別排序(有可能再使用別的排序算法或是以遞歸方式繼續(xù)使用桶排序進行排序)。
2)算法描述和實現(xiàn)
具體算法描述如下:
設(shè)置一個定量的數(shù)組當作空桶;
遍歷輸入數(shù)據(jù),并且把數(shù)據(jù)一個一個放到對應的桶里去;
對每個不是空的桶進行排序;
從不是空的桶里把排好序的數(shù)據(jù)拼接起來。
JavaScript代碼實現(xiàn):
/*方法說明:桶排序 @param array 數(shù)組 @param num 桶的數(shù)量*/ function bucketSort(array, num) { if (array.length <= 1) { return array; } var len = array.length, buckets = [], result = [], min = max = array[0], regex = '/^[1-9]+[0-9]*$/', space, n = 0; num = num || ((num > 1 && regex.test(num)) ? num : 10); for (var i = 1; i < len; i++) { min = min <= array[i] ? min : array[i]; max = max >= array[i] ? max : array[i]; } space = (max - min + 1) / num; for (var j = 0; j < len; j++) { var index = Math.floor((array[j] - min) / space); if (buckets[index]) { // 非空桶,插入排序 var k = buckets[index].length - 1; while (k >= 0 && buckets[index][k] > array[j]) { buckets[index][k + 1] = buckets[index][k]; k--; } buckets[index][k + 1] = array[j]; } else { //空桶,初始化 buckets[index] = []; buckets[index].push(array[j]); } } while (n < num) { result = result.concat(buckets[n]); n++; } return result; }
3)算法分析
桶排序最好情況下使用線性時間O(n),桶排序的時間復雜度,取決與對各個桶之間數(shù)據(jù)進行排序的時間復雜度,因為其它部分的時間復雜度都為O(n)。很顯然,桶劃分的越小,各個桶之間的數(shù)據(jù)越少,排序所用的時間也會越少。但相應的空間消耗就會增大。
九、計數(shù)排序
1)算法簡介
計數(shù)排序(Counting sort)是一種穩(wěn)定的排序算法。計數(shù)排序使用一個額外的數(shù)組C,其中第i個元素是待排序數(shù)組A中值等于i的元素的個數(shù)。然后根據(jù)數(shù)組C來將A中的元素排到正確的位置。它只能對整數(shù)進行排序。
2)算法描述和實現(xiàn)
具體算法描述如下:
找出待排序的數(shù)組中最大和最小的元素;
統(tǒng)計數(shù)組中每個值為i的元素出現(xiàn)的次數(shù),存入數(shù)組C的第i項;
對所有的計數(shù)累加(從C中的第一個元素開始,每一項和前一項相加);
反向填充目標數(shù)組:將每個元素i放在新數(shù)組的第C(i)項,每放一個元素就將C(i)減去1。
JavaScript代碼實現(xiàn):
function countingSort(array) { var len = array.length, B = [], C = [], min = max = array[0]; for (var i = 0; i < len; i++) { min = min <= array[i] ? min : array[i]; max = max >= array[i] ? max : array[i]; C[array[i]] = C[array[i]] ? C[array[i]] + 1 : 1; } for (var j = min; j < max; j++) { C[j + 1] = (C[j + 1] || 0) + (C[j] || 0); } for (var k = len - 1; k >=0; k--) { B[C[array[k]] - 1] = array[k]; C[array[k]]--; } return B; }
3)算法分析
當輸入的元素是n 個0到k之間的整數(shù)時,它的運行時間是 O(n + k)。計數(shù)排序不是比較排序,排序的速度快于任何比較排序算法。由于用來計數(shù)的數(shù)組C的長度取決于待排序數(shù)組中數(shù)據(jù)的范圍(等于待排序數(shù)組的最大值與最小值的差加上1),這使得計數(shù)排序?qū)τ跀?shù)據(jù)范圍很大的數(shù)組,需要大量時間和內(nèi)存。
以上就是關(guān)于常見javascript排序算法的全部內(nèi)容,希望對大家的學習有所幫助。
相關(guān)文章
如何解決easyui自定義標簽 datagrid edit combobox 手動輸入保存不上
這篇文章主要介紹了如何解決easyui自定義標簽 datagrid edit combobox 手動輸入保存不上,需要的朋友可以參考下2015-12-12googlemap 之 javascript實現(xiàn)方法
googlemap 之 javascript實現(xiàn)方法...2007-01-01JS+CSS實現(xiàn)模仿瀏覽器網(wǎng)頁字符查找功能的方法
這篇文章主要介紹了JS+CSS實現(xiàn)模仿瀏覽器網(wǎng)頁字符查找功能的方法,實例分析了javascript實現(xiàn)查找功能的樣式及相關(guān)技巧,具有一定參考借鑒價值,需要的朋友可以參考下2015-02-02JS循環(huán)中正確使用async、await的姿勢分享
async?/?await是ES7的重要特性之一,也是目前社區(qū)里公認的優(yōu)秀異步解決方案,下面這篇文章主要給大家介紹了關(guān)于JS循環(huán)中正確使用async、await的相關(guān)資料,文中通過實例代碼介紹的非常詳細,需要的朋友可以參考下2021-12-12asp.net+js 實現(xiàn)無刷新上傳解析csv文件的代碼
無刷新上傳解析csv文件的實現(xiàn)代碼,需要的朋友可以參考下。2010-05-05