Python實(shí)現(xiàn)的最近最少使用算法
更新時(shí)間:2015年07月10日 15:12:07 作者:Sephiroth
這篇文章主要介紹了Python實(shí)現(xiàn)的最近最少使用算法,涉及節(jié)點(diǎn)、時(shí)間、流程控制等相關(guān)技巧,需要的朋友可以參考下
本文實(shí)例講述了Python實(shí)現(xiàn)的最近最少使用算法。分享給大家供大家參考。具體如下:
# lrucache.py -- a simple LRU (Least-Recently-Used) cache class
# Copyright 2004 Evan Prodromou <evan@bad.dynu.ca>
# Licensed under the Academic Free License 2.1
# Licensed for ftputil under the revised BSD license
# with permission by the author, Evan Prodromou. Many
# thanks, Evan! :-)
#
# The original file is available at
# http://pypi.python.org/pypi/lrucache/0.2 .
# arch-tag: LRU cache main module
"""a simple LRU (Least-Recently-Used) cache module
This module provides very simple LRU (Least-Recently-Used) cache
functionality.
An *in-memory cache* is useful for storing the results of an
'expe\nsive' process (one that takes a lot of time or resources) for
later re-use. Typical examples are accessing data from the filesystem,
a database, or a network location. If you know you'll need to re-read
the data again, it can help to keep it in a cache.
You *can* use a Python dictionary as a cache for some purposes.
However, if the results you're caching are large, or you have a lot of
possible results, this can be impractical memory-wise.
An *LRU cache*, on the other hand, only keeps _some_ of the results in
memory, which keeps you from overusing resources. The cache is bounded
by a maximum size; if you try to add more values to the cache, it will
automatically discard the values that you haven't read or written to
in the longest time. In other words, the least-recently-used items are
discarded. [1]_
.. [1]: 'Discarded' here means 'removed from the cache'.
"""
from __future__ import generators
import time
from heapq import heappush, heappop, heapify
# the suffix after the hyphen denotes modifications by the
# ftputil project with respect to the original version
__version__ = "0.2-1"
__all__ = ['CacheKeyError', 'LRUCache', 'DEFAULT_SIZE']
__docformat__ = 'reStructuredText en'
DEFAULT_SIZE = 16
"""Default size of a new LRUCache object, if no 'size' argument is given."""
class CacheKeyError(KeyError):
"""Error raised when cache requests fail
When a cache record is accessed which no longer exists (or never did),
this error is raised. To avoid it, you may want to check for the existence
of a cache record before reading or deleting it."""
pass
class LRUCache(object):
"""Least-Recently-Used (LRU) cache.
Instances of this class provide a least-recently-used (LRU) cache. They
emulate a Python mapping type. You can use an LRU cache more or less like
a Python dictionary, with the exception that objects you put into the
cache may be discarded before you take them out.
Some example usage::
cache = LRUCache(32) # new cache
cache['foo'] = get_file_contents('foo') # or whatever
if 'foo' in cache: # if it's still in cache...
# use cached version
contents = cache['foo']
else:
# recalculate
contents = get_file_contents('foo')
# store in cache for next time
cache['foo'] = contents
print cache.size # Maximum size
print len(cache) # 0 <= len(cache) <= cache.size
cache.size = 10 # Auto-shrink on size assignment
for i in range(50): # note: larger than cache size
cache[i] = i
if 0 not in cache: print 'Zero was discarded.'
if 42 in cache:
del cache[42] # Manual deletion
for j in cache: # iterate (in LRU order)
print j, cache[j] # iterator produces keys, not values
"""
class __Node(object):
"""Record of a cached value. Not for public consumption."""
def __init__(self, key, obj, timestamp, sort_key):
object.__init__(self)
self.key = key
self.obj = obj
self.atime = timestamp
self.mtime = self.atime
self._sort_key = sort_key
def __cmp__(self, other):
return cmp(self._sort_key, other._sort_key)
def __repr__(self):
return "<%s %s => %s (%s)>" % \
(self.__class__, self.key, self.obj, \
time.asctime(time.localtime(self.atime)))
def __init__(self, size=DEFAULT_SIZE):
# Check arguments
if size <= 0:
raise ValueError, size
elif type(size) is not type(0):
raise TypeError, size
object.__init__(self)
self.__heap = []
self.__dict = {}
"""Maximum size of the cache.
If more than 'size' elements are added to the cache,
the least-recently-used ones will be discarded."""
self.size = size
self.__counter = 0
def _sort_key(self):
"""Return a new integer value upon every call.
Cache nodes need a monotonically increasing time indicator.
time.time() and time.clock() don't guarantee this in a
platform-independent way.
"""
self.__counter += 1
return self.__counter
def __len__(self):
return len(self.__heap)
def __contains__(self, key):
return self.__dict.has_key(key)
def __setitem__(self, key, obj):
if self.__dict.has_key(key):
node = self.__dict[key]
# update node object in-place
node.obj = obj
node.atime = time.time()
node.mtime = node.atime
node._sort_key = self._sort_key()
heapify(self.__heap)
else:
# size may have been reset, so we loop
while len(self.__heap) >= self.size:
lru = heappop(self.__heap)
del self.__dict[lru.key]
node = self.__Node(key, obj, time.time(), self._sort_key())
self.__dict[key] = node
heappush(self.__heap, node)
def __getitem__(self, key):
if not self.__dict.has_key(key):
raise CacheKeyError(key)
else:
node = self.__dict[key]
# update node object in-place
node.atime = time.time()
node._sort_key = self._sort_key()
heapify(self.__heap)
return node.obj
def __delitem__(self, key):
if not self.__dict.has_key(key):
raise CacheKeyError(key)
else:
node = self.__dict[key]
del self.__dict[key]
self.__heap.remove(node)
heapify(self.__heap)
return node.obj
def __iter__(self):
copy = self.__heap[:]
while len(copy) > 0:
node = heappop(copy)
yield node.key
raise StopIteration
def __setattr__(self, name, value):
object.__setattr__(self, name, value)
# automagically shrink heap on resize
if name == 'size':
while len(self.__heap) > value:
lru = heappop(self.__heap)
del self.__dict[lru.key]
def __repr__(self):
return "<%s (%d elements)>" % (str(self.__class__), len(self.__heap))
def mtime(self, key):
"""Return the last modification time for the cache record with key.
May be useful for cache instances where the stored values can get
'stale', such as caching file or network resource contents."""
if not self.__dict.has_key(key):
raise CacheKeyError(key)
else:
node = self.__dict[key]
return node.mtime
if __name__ == "__main__":
cache = LRUCache(25)
print cache
for i in range(50):
cache[i] = str(i)
print cache
if 46 in cache:
print "46 in cache"
del cache[46]
print cache
cache.size = 10
print cache
cache[46] = '46'
print cache
print len(cache)
for c in cache:
print c
print cache
print cache.mtime(46)
for c in cache:
print c
希望本文所述對(duì)大家的Python程序設(shè)計(jì)有所幫助。
您可能感興趣的文章:
- 約瑟夫問題的Python和C++求解方法
- python超簡單解決約瑟夫環(huán)問題
- python裝飾器與遞歸算法詳解
- python實(shí)現(xiàn)RSA加密(解密)算法
- 使用python實(shí)現(xiàn)rsa算法代碼
- 八大排序算法的Python實(shí)現(xiàn)
- Python聚類算法之DBSACN實(shí)例分析
- Python聚類算法之凝聚層次聚類實(shí)例分析
- 以Python代碼實(shí)例展示kNN算法的實(shí)際運(yùn)用
- Python字符串匹配算法KMP實(shí)例
- python實(shí)現(xiàn)中文分詞FMM算法實(shí)例
- Python實(shí)現(xiàn)約瑟夫環(huán)問題的方法
相關(guān)文章
2023巨詳細(xì)的Python安裝庫教程(以pycharm和Anaconda安裝pygame為例)
這篇文章主要給大家介紹了巨詳細(xì)的Python安裝庫教程,文中以pycharm和Anaconda安裝pygame為例,通過圖文介紹的非常詳細(xì),需要的朋友可以參考下2024-01-01
DRF使用simple JWT身份驗(yàn)證的實(shí)現(xiàn)
這篇文章主要介紹了DRF使用simple JWT身份驗(yàn)證,文中通過示例代碼介紹的非常詳細(xì),對(duì)大家的學(xué)習(xí)或者工作具有一定的參考學(xué)習(xí)價(jià)值,需要的朋友們下面隨著小編來一起學(xué)習(xí)學(xué)習(xí)吧2021-01-01
python中os.remove()用法及注意事項(xiàng)
在本篇內(nèi)容里小編給大家分享的是一篇關(guān)于python中os.remove()用法及注意事項(xiàng),有需要的朋友們可以跟著學(xué)習(xí)下。2021-01-01
100 個(gè) Python 小例子(練習(xí)題三)
這篇文章主要給大家分享的是100 個(gè) Python 小例子,前期已經(jīng)給大家分過100個(gè)小例子的(一)和(二),今天小編繼續(xù)和大家分享(三),希望歲正在學(xué)習(xí)的你有所幫助2022-01-01
Python的內(nèi)置數(shù)據(jù)類型中的數(shù)字
這篇文章主要介紹Python內(nèi)置數(shù)據(jù)類型中的數(shù)字(Number),包括整數(shù)(int),小數(shù)(float),復(fù)數(shù)(Complex),布爾類型(bool)這幾種數(shù)據(jù)類型。本文介紹的都是Python3.x中的數(shù)據(jù)類型,需要的朋友請(qǐng)參考下面文章2021-09-09

