亚洲乱码中文字幕综合,中国熟女仑乱hd,亚洲精品乱拍国产一区二区三区,一本大道卡一卡二卡三乱码全集资源,又粗又黄又硬又爽的免费视频

僅用50行代碼實現(xiàn)一個Python編寫的計算器的教程

 更新時間:2015年04月17日 15:47:32   投稿:goldensun  
這篇文章主要介紹了僅用50行代碼實現(xiàn)一個Python編寫的計算器的教程,主要用到了PlyPlus庫使得核心代碼十分簡單,需要的朋友可以參考下

 簡介

在這篇文章中,我將向大家演示怎樣向一個通用計算器一樣解析并計算一個四則運算表達式。當我們結束的時候,我們將得到一個可以處理諸如 1+2*-(-3+2)/5.6+3樣式的表達式的計算器了。當然,你也可以將它拓展的更為強大。

我本意是想提供一個簡單有趣的課程來講解 語法分析 和 正規(guī)語法(編譯原理內容)。同時,介紹一下PlyPlus,這是一個我斷斷續(xù)續(xù)改進了好幾年的語法解析 接口。作為這個課程的附加產物,我們最后會得到完全可替代eval()的一個安全的四則運算器。

如果你想在自家的電腦上試試本文中給的例子的話,你應該先安裝 PlyPlus ,使用命令pip install plyplus  。(譯者注:pip是一個包管理系統(tǒng),用來安裝用python寫的軟件包,具體使用方法大家可以百度之或是google之,就不贅述了。)

本篇文章需要對python的繼承使用有所了解。

語法

對于那些不懂的如何解析和正式語法工作的人而言,這里有一個快速的概覽:正式語法是用來解析文本的一些不同層面的規(guī)則。每一個規(guī)則都描述了相對應的那部分輸入的文本是如何組成的。

這里是一個用來展示如何解析1+2+3+4的例子:
 

Rule #1 - add IS MADE OF add + number
            OR number + number

或者用 EBNF:
 

add: add'+'number
  | number'+'number
  ;

解析器每次都會尋找add+number或者number+number,找到一個之后就會將其轉換成add?;旧隙?,每一個解析器的目標都在于盡可能的找到最高層次的表達式抽象。

以下是解析器的每個步驟:

  number + number + number + number

    第一次轉換將所有的Number變成“number”規(guī)則

  [number + number] + number + number

    解析器找到了它的第一個匹配模式!

  [add + number] + number

    在轉換成一個模式之后,它開始尋找下一個

  [add + number]
  add


這些有次序的符號變成了一個層次上的兩個簡單規(guī)則: number+number和add+number。這樣,只需要告訴計算機如果解決這兩個問題,它就能解析整個表達式。事實上,無論多長的加法序列,它都能解決! 這就是形式文法的力量。
運算符優(yōu)先級

算數(shù)表達式并不僅僅是符號的線性增長,運算符創(chuàng)造了一個隱式的層次結構,這非常適合用形式文法來表示:

1 + 2 * 3 / 4 - 5 + 6

這相當于:

1 + (2 * 3 / 4) - 5 + 6

我們可以通過嵌套規(guī)則表示此語法中的結構:
 

add: add+mul
  | mul'+'mul
  ;
mul: mul '*; number
  | number'*'number
  ;

通過將add設為操作mul而不是number,我們就得到了乘法優(yōu)先的規(guī)則。

讓我們在腦海中模擬一下使用這個神奇的解析器來分析1+2*3*4的過程:

  number + number * number * number
  number + [number * number] * number

    解析器不知道number+number的結果,所以這是它(解析器)的另一個選擇

  number + [mul * number]
  number + mul
  ???

現(xiàn)在我們遇到了一點困難! 解析器不知道如何處理number+mul。我們可以區(qū)分這種情況,但是如果我們繼續(xù)探索下去,就會發(fā)現(xiàn)有很多不同的沒有考慮到得可能,比如mul+number, add+number, add+add, 等等。

那么我們應該怎么做呢?

幸運的是,我們可以做一點小“把戲”:我們可以認為一個number本身是一個乘積,并且一個乘積本身是一個和!

這種思路一開始看起來有點古怪,不過它的確是有意義的:
 

add: add'+'mul
  | mul'+'mul
  | mul
  ;
mul: mul'*'number
  | number'*'number
  | number
  ;

但是如果 mul能夠變成 add, 且 number能夠變成 mul , 有些行的內容就變得多余了。丟棄它們,我們就得到了:
 

add: add'+'mul
  | mul
  ;
mul: mul'*'number
  | number
  ;

讓我們來使用這種新的語法來模擬運行一下1+2*3*4:

  number + number * number * number

    現(xiàn)在沒有一個規(guī)則是對應number*number的了,但是解析器可以“變得有創(chuàng)造性”

  number + [number] * number * number
  number + [mul * number] * number
  number + [mul * number]
  [number] + mul
  [mul] + mul
  [add + mul]
  add

成功了?。?!

如果你覺得這個很奇妙,那么嘗試著去用另一種算數(shù)表達式來模擬運行一下,然后看看表達式是如何用正確的方式來一步步解決問題的?;蛘叩戎喿x下一節(jié)中的內容,看看計算機是如何一步步運行出來的!

運行解析器

現(xiàn)在我們對于如何讓我們的語法運作起來已經有了非常不錯的想法了,那就寫一個實際的語法來應用一下吧:

復制代碼 代碼如下:
 
start: add;            // 這是最高層
add: add add_symbol mul | mul;
mul: mul mul_symbol number | number;
number:'[d.]+';      // 十進制數(shù)的正則表達式
mul_symbol:'*'|'/';// Match * or /
add_symbol:'+'|'-';// Match + or -

你可能想要復習一下正則表達式,但不管怎樣,這個語法都非常直截了當。讓我們用一個表達式來測試一下吧:
 

>>>fromplyplusimportGrammar
>>> g=Grammar("""...""")
>>>printg.parse('1+2*3-5').pretty()
start
 add
  add
   add
    mul
     number
      1
   add_symbol
    +
   mul
    mul
     number
      2
    mul_symbol
     *
    number
     3
  add_symbol
   -
  mul
   number
    5

干得漂亮!

仔細研究一下這棵樹,看看解析器選擇了什么層次。

如果你希望親自運行這個解析器,并使用你自己的表達式,你只需有Python即可。安裝Pip和PlyPlus之后,將上面的命令粘貼到Python內(記得將'...'替換為實際的語法哦~)。

使樹成形

Plyplus會自動創(chuàng)建一棵樹,但它并不一定是最優(yōu)的。將number放入到mul和將mul放入到add非常有利于創(chuàng)建一個階層,現(xiàn)在我們已經有了一個階層那它們反而會成為一個負擔。我們告訴Plyplus對它們加前綴去“展開”(i.e.刪除)規(guī)則。

碰到一個@常常會展開一個規(guī)則,一個#則會壓平它,一個?會在它有一個子結點時展開。在這種情況下,?就是我們所需要的。
 

start: add;
?add: add add_symbol mul | mul;   // Expand add if it's just a mul
?mul: mul mul_symbol number | number;// Expand mul if it's just a number
number:'[d.]+';
mul_symbol:'*'|'/';
add_symbol:'+'|'-';

在新語法下樹是這樣的:
 

>>> g=Grammar("""...""")
>>>printg.parse('1+2*3-5').pretty()
start
 add
  add
   number
    1
   add_symbol
    +
   mul
    number
     2
    mul_symbol
     *
    number
     3
  add_symbol
   -
  number
   5

哦,這樣變得簡潔多了,我敢說,它是非常好的。

括號的處理及其它特性

目前為止,我們還明顯缺少一些必須的特性:括號,單元運算符(-(1+2)),及表達式中間允許存在空字符。其實這些特性都很容易就能實現(xiàn),下面我們來嘗試一下。

需要先引入一個重要的概念:原子。在一個原子里面(括號中及單元運算)發(fā)生的所有操作都優(yōu)先于所有加法或乘法運算(包括位操作)。由于原子只是一個優(yōu)先級的構造器,并無語法意義,幫我們加上"@"符號以確保在編譯時它被能展開。

允許空格出現(xiàn)在表達式內最簡單的方法就是使用這種解釋方式:add SPACE add_symbol SPACE mul | mul;  但個解釋結果啰嗦且可讀性差。所有,我們需要令Plyplus總是忽略空格。

下面是完整的語法,包容了以上所述特性:
 

start: add;
?add: (add add_symbol)? mul;
?mul: (mul mul_symbol)? atom;
@atom: neg | number |'('add')';
neg:'-'atom;
number:'[d.]+';
mul_symbol:'*'|'/';
add_symbol:'+'|'-';
WHITESPACE:'[ t]+'(%ignore);

請確保理解這個語法再進入下一步:計算!

運算

現(xiàn)在,我們已經可以將一個表達式轉化成一棵分層樹了,只需要逐分支地掃描這棵樹,便可得到最終結果。

我們現(xiàn)在要開始編寫代碼了,在此之前,我需要對這棵樹做兩點解釋:

    1.每個分支都是包含如下兩個屬性的實例:

  •         頭(head):規(guī)則的名字(例如add或者number);
  •         尾(tail):包含所有與其匹配的子規(guī)則的列表。

    2.Plyplus默認會刪除不必要的標記。在本例中,'( ' ,')' 和 '-' 會被刪除。但add和mul會有自己的規(guī)則,Plyplus會知道它們是必須的,從而不會被刪除它們。如果你需要保留這些標記,可以手動關掉這項功能,但從我的經驗來看,最好不要這樣做,而是手動修改相關語法效果更佳。


言歸正傳,現(xiàn)在我們開始編寫代碼。我們將用一個非常簡單的轉換器來掃描這棵樹。它會從最外面的分支開始掃描,直到到達根節(jié)點為止,而我們的工作是告訴它如何掃描。如果一切順利的話,它將總會從最外層開始掃描!讓我們看看具體的實現(xiàn)吧。

 

>>>importoperator as op
>>>fromplyplusimportSTransformer
 
classCalc(STransformer):
 
  def_bin_operator(self, exp):
    arg1, operator_symbol, arg2=exp.tail
 
    operator_func={'+': op.add,
             '-': op.sub,
             '*': op.mul,
             '/': op.div }[operator_symbol]
 
    returnoperator_func(arg1, arg2)
 
  number   =lambdaself, exp:float(exp.tail[0])
  neg    =lambdaself, exp:-exp.tail[0]
  __default__=lambdaself, exp: exp.tail[0]
 
  add=_bin_operator
  mul=_bin_operator

每個方法都對應一個規(guī)則。如果方法不存在的話,將調用__default__方法。我們在其中省略了start,add_symbol和mul_symbol,因為它們只會返回自己的分支。

我使用了float()來解析數(shù)字,這是個懶方法,但我也可以用解析器來實現(xiàn)。

為了使語句整潔,我使用了運算符模塊。例如add基本上是 'lambda x,y: x+y'之類的。

OK,現(xiàn)在我們運行這段代碼來檢查一下結果。
 

>>> Calc().transform( g.parse('1 + 2 * -(-3+2) / 5.6 + 30'))
31.357142857142858

那么eval()呢?7
 

>>>eval('1 + 2 * -(-3+2) / 5.6 + 30')
31.357142857142858

成功了:)
 
最后一步:REPL

為了美觀,我們把它封裝到一個不錯的計算器 REPL:
 

defmain():
  calc=Calc()
  whileTrue:
    try:
      s=raw_input('> ')
    exceptEOFError:
      break
    ifs=='':
      break
    tree=calc_grammar.parse(s)
    printcalc.transform(tree)

完整的代碼可從這里獲?。?br /> https://github.com/erezsh/plyplus/blob/master/examples/calc.py

相關文章

  • Python requests.post方法中data與json參數(shù)區(qū)別詳解

    Python requests.post方法中data與json參數(shù)區(qū)別詳解

    這篇文章主要介紹了Python requests.post方法中data與json參數(shù)區(qū)別詳解,具有很好的參考價值,希望對大家有所幫助。一起跟隨小編過來看看吧
    2020-04-04
  • 利用 Python 實現(xiàn)多任務進程

    利用 Python 實現(xiàn)多任務進程

    這篇文章主要介紹如何利用 Python 實現(xiàn)多任務進程,正在執(zhí)行的程序,由程序、數(shù)據(jù)和進程控制塊組成,是正在執(zhí)行的程序,程序的一次執(zhí)行過程,是資源調度的基本單位。下面就來詳細介紹改內容,需要的朋友可以參考一下
    2021-10-10
  • python算法深入理解風控中的KS原理

    python算法深入理解風控中的KS原理

    這篇文章主要為大家介紹了python算法深入理解風控中的KS原理解析,有需要的朋友可以借鑒參考下,希望能夠有所幫助,祝大家多多進步,早日升職加薪
    2021-11-11
  • python四種出行路線規(guī)劃的實現(xiàn)

    python四種出行路線規(guī)劃的實現(xiàn)

    路徑規(guī)劃中包括步行、公交、駕車、騎行等不同方式,今天借助高德地圖web服務api,實現(xiàn)出行路線規(guī)劃。感興趣的可以了解下
    2021-06-06
  • Python機器學習之邏輯回歸

    Python機器學習之邏輯回歸

    這篇文章主要介紹了Python機器學習之邏輯回歸,文中有非常詳細的代碼示例,對正在學習Python的小伙伴們有非常好的幫助,需要的朋友可以參考下
    2021-05-05
  • 使用pyqt 實現(xiàn)重復打開多個相同界面

    使用pyqt 實現(xiàn)重復打開多個相同界面

    今天小編就為大家分享一篇使用pyqt 實現(xiàn)重復打開多個相同界面,具有很好的參考價值,希望對大家有所幫助。一起跟隨小編過來看看吧
    2019-12-12
  • Python的SQLAlchemy框架使用入門

    Python的SQLAlchemy框架使用入門

    這篇文章主要介紹了Python的SQLAlchemy框架使用入門,SQLAlchemy框架是Python中用來操作數(shù)據(jù)庫的ORM框架之一,需要的朋友可以參考下
    2015-04-04
  • scrapy 遠程登錄控制臺的實現(xiàn)

    scrapy 遠程登錄控制臺的實現(xiàn)

    本文主要介紹了scrapy 遠程登錄控制臺的實現(xiàn),文中通過示例代碼介紹的非常詳細,對大家的學習或者工作具有一定的參考學習價值,需要的朋友們下面隨著小編來一起學習學習吧
    2023-02-02
  • Pycharm plot獨立窗口顯示的操作

    Pycharm plot獨立窗口顯示的操作

    這篇文章主要介紹了Pycharm plot獨立窗口顯示的操作,具有很好的參考價值,希望對大家有所幫助。一起跟隨小編過來看看吧
    2020-12-12
  • python實現(xiàn)ftp客戶端示例分享

    python實現(xiàn)ftp客戶端示例分享

    這篇文章主要介紹了python實現(xiàn)ftp客戶端示例,包括ftp的常見任務,上傳,下載,刪除,更名等功能,需要的朋友可以參考下
    2014-02-02

最新評論