貪心算法 WOODEN STICKS 實(shí)例代碼
Problem Description
There is a pile of n wooden sticks. The length and weight of each stick are known in advance. The sticks are to be processed by a woodworking machine in one by one fashion. It needs some time, called setup time, for the machine to prepare processing a stick. The setup times are associated with cleaning operations and changing tools and shapes in the machine. The setup times of the woodworking machine are given as follows:
(a) The setup time for the first wooden stick is 1 minute. (b) Right after processing a stick of length l and weight w , the machine will need no setup time for a stick of length l' and weight w' if l<=l' and w<=w'. Otherwise, it will need 1 minute for setup.
You are to find the minimum setup time to process a given pile of n wooden sticks. For example, if you have five sticks whose pairs of length and weight are (4,9), (5,2), (2,1), (3,5), and (1,4), then the minimum setup time should be 2 minutes since there is a sequence of pairs (1,4), (3,5), (4,9), (2,1), (5,2).
Input
The input consists of T test cases. The number of test cases (T) is given in the first line of the input file. Each test case consists of two lines: The first line has an integer n , 1<=n<=5000, that represents the number of wooden sticks in the test case, and the second line contains n 2 positive integers l1, w1, l2, w2, ..., ln, wn, each of magnitude at most 10000 , where li and wi are the length and weight of the i th wooden stick, respectively. The 2n integers are delimited by one or more spaces.
Output
The output should contain the minimum setup time in minutes, one per line.
Sample Input
3 5 4 9 5 2 2 1 3 5 1 4 3 2 2 1 1 2 2 3 1 3 2 2 3 1
Sample Output
2 1 3
#include<stdio.h>
#include<stdlib.h>
#include<string.h>
#define N 5000;
struct node
{
int l;
int w;
int flag;
}sticks[5000];
int cmp(const void *p,const void *q)
{
struct node *a = (struct node *)p;
struct node *b = (struct node *)q;
if(a->l > b->l) return 1;
else if(a->l < b->l) return -1;
else return a->w > b->w ? 1 : -1;
}
int main()
{
int t,n,cnt,cl,cw;
int i,j;
scanf("%d",&t);
while(t--)
{
memset(sticks,0,sizeof(sticks));
scanf("%d",&n);
for( i = 0; i < n; i++)
scanf("%d %d",&sticks[i].l,&sticks[i].w);
qsort(sticks,n,sizeof(sticks[0]),cmp);
sticks[0].flag = 1;
cl = sticks[0].l;
cw = sticks[0].w;
cnt = 1;
for( j = 1; j < n; j++)
{
for( i = j; i < n; i++)
{
if(!sticks[i].flag&&sticks[i].l>=cl&&sticks[i].w>=cw)
{
cl = sticks[i].l;
cw = sticks[i].w;
sticks[i].flag = 1;
}
}
i = 1;
while(sticks[i].flag)
i++;
j = i;
if(j == n) break;
cl = sticks[j].l;
cw = sticks[j].w;
sticks[j].flag = 1;
cnt++;
}
printf("%d\n",cnt);
}
return 0;
}
題意:
我們要處理一些木棍,第一根的時(shí)間是1分鐘,另外的,在長(zhǎng)度為l,重為w的木棍后面的那根的長(zhǎng)度為l', 重量w',只要l <=l' 并且w <= w',就不需要時(shí)間,否則需要1分鐘,求如何安排處理木棍的順序,才能使花的時(shí)間最少。
思路:
貪心算法。先把這些木棍按長(zhǎng)度和重量都從小到大的順序排列。cl和cw是第一根的長(zhǎng)度和重量,依次比較后面的是不是比當(dāng)前的cl,cw大,是的話把標(biāo)志flag設(shè)為1,并跟新cl,cw。比較完后,再?gòu)那巴髵呙?,找到第一個(gè)標(biāo)志位為0的,作為是第二批的最小的一根,計(jì)數(shù)器加一。把它的長(zhǎng)度和重量作為當(dāng)前的cl,cw,再循環(huán)往后比較。直到所有的都處理了。
相關(guān)文章
Qt實(shí)現(xiàn)轉(zhuǎn)動(dòng)輪播圖
這篇文章主要為大家詳細(xì)介紹了Qt實(shí)現(xiàn)轉(zhuǎn)動(dòng)輪播圖,文中示例代碼介紹的非常詳細(xì),具有一定的參考價(jià)值,感興趣的小伙伴們可以參考一下2020-06-06VC創(chuàng)建圓角dialog的實(shí)現(xiàn)方法
這篇文章主要介紹了VC創(chuàng)建圓角dialog的實(shí)現(xiàn)方法,結(jié)合實(shí)例形式分析了圓角dialog對(duì)話框的創(chuàng)建步驟與相關(guān)操作技巧,需要的朋友可以參考下2016-08-08基于Protobuf C++ serialize到char*的實(shí)現(xiàn)方法分析
本篇文章是對(duì)Protobuf C++ serialize到char*的實(shí)現(xiàn)方法進(jìn)行了詳細(xì)的分析介紹。需要的朋友參考下2013-05-05淺談CMake配置OpenCV 時(shí)靜態(tài)鏈接與動(dòng)態(tài)鏈接的選擇
下面小編就為大家?guī)?lái)一篇淺談CMake配置OpenCV 時(shí)靜態(tài)鏈接與動(dòng)態(tài)鏈接的選擇。小編覺(jué)得挺不錯(cuò)的,現(xiàn)在就分享給大家,也給大家做個(gè)參考。一起跟隨小編過(guò)來(lái)看看吧2017-01-01C語(yǔ)言內(nèi)存管理及初始化細(xì)節(jié)示例詳解
這篇文章主要為大家介紹了C語(yǔ)言內(nèi)存管理及初始化細(xì)節(jié)示例的詳解,有需要的朋友可以借鑒參考下,希望能夠有所幫助,祝大家多多進(jìn)步2022-02-02