使用Tensorflow?hub完成目標檢測過程詳解
前言
本文主要介紹使用 tensorflow hub 中的 CenterNet HourGlass104 Keypoints 模型來完成簡單的目標檢測任務。使用到的主要環(huán)境是:
- tensorflow-cpu=2.10
- tensorflow-hub=0.11.0
- tensorflow-estimator=2.6.0
- python=3.8
- protobuf=3.20.1
導入必要的庫
首先導入必要的 python 包,后面要做一些復雜的安裝和配置工作,需要一點耐心和時間。在運行下面代碼的時候可能會報錯:
TypeError: Descriptors cannot not be created directly. If this call came from a _pb2.py file, your generated code is out of date and must be regenerated with protoc >= 3.19.0. If you cannot immediately regenerate your protos, some other possible workarounds are: 1. Downgrade the protobuf package to 3.20.x or lower. 2. Set PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION=python (but this will use pure-Python parsing and will be much slower).
你只需要重新使用 pip 安裝,將 protobuf 降低到 3.20.x 版本即可。
import os import pathlib import matplotlib import matplotlib.pyplot as plt import io import scipy.misc import numpy as np from six import BytesIO from PIL import Image, ImageDraw, ImageFont from six.moves.urllib.request import urlopen import tensorflow as tf import tensorflow_hub as hub tf.get_logger().setLevel('ERROR')
準備數(shù)據(jù)和模型
(1)到 github.com/protocolbuf… 用迅雷下載對應操作系統(tǒng)的壓縮包,我的是 win7 版本: github.com/protocolbuf…
(2)下載好之后隨便解壓到自定義目錄,我的是 “主目錄\protoc-22.1-win64”,然后將其中的 “主目錄\protoc-22.1-win64\bin” 路徑添加到用戶環(huán)境變量中的 PATH 變量中,重新打開命令行,輸入 protoc --version ,如果能正常返回版本號說明配置成功,可以開始使用。
(3)進入命令行,在和本文件同一個目錄下,執(zhí)行命令
git clone --depth 1 https://github.com/tensorflow/models
,將 models 文件夾下載下來,進入 models/research/ 下,使用命令執(zhí)行
protoc object_detection/protos/*.proto --python_out=.
將 models/research/object_detection/packages/tf2/setup.py 拷貝到和 models/research/ 下,然后使用執(zhí)行本文件的 python 對應的 pip 去執(zhí)行安裝包操作
..\Anaconda3\envs\tfcpu2.10_py38\Scripts\pip.exe install . -i https://pypi.tuna.tsinghua.edu.cn/simple
中間可能會報錯“error: netadata-generation-failed”,一般都是某個包安裝的時候出問題了,我們只需要看詳細的日志,單獨用 pip 進行安裝即可,單獨安裝完之后,再去執(zhí)行上面的根據(jù) setup.py 的整裝操作,反復即可,過程有點麻煩但還是都可以安裝成功的。
(4)這里的模型本來在:
https://tfhub.dev/tensorflow/centernet/hourglass\_512x512\_kpts/1
但是由于網(wǎng)絡問題無法獲取,所以我們可以改為從
https://storage.googleapis.com/tfhub-modules/tensorflow/centernet/hourglass\_512x512\_kpts/1.tar.gz
獲取模型。
from object_detection.utils import label_map_util from object_detection.utils import visualization_utils as viz_utils from object_detection.utils import ops as utils_ops PATH_TO_LABELS = './models/research/object_detection/data/mscoco_label_map.pbtxt' category_index = label_map_util.create_category_index_from_labelmap(PATH_TO_LABELS, use_display_name=True) model_path = 'https://storage.googleapis.com/tfhub-modules/tensorflow/centernet/hourglass_512x512_kpts/1.tar.gz' print('TensorFlow Hub 中的模型地址: {}'.format(model_path)) print('加載模型...') hub_model = hub.load(model_path) print('加載成功!')
打印結果:
TensorFlow Hub 中的模型地址: https://storage.googleapis.com/tfhub-modules/tensorflow/centernet/hourglass_512x512_kpts/1.tar.gz 加載模型... WARNING:absl:Importing a function (__inference_batchnorm_layer_call_and_return_conditional_losses_42408) with ops with custom gradients. Will likely fail if a gradient is requested. WARNING:absl:Importing a function (__inference_batchnorm_layer_call_and_return_conditional_losses_209416) with ops with custom gradients. Will likely fail if a gradient is requested. ... WARNING:absl:Importing a function (__inference_batchnorm_layer_call_and_return_conditional_losses_56488) with ops with custom gradients. Will likely fail if a gradient is requested. 加載成功!
(5)在這里我們主要定義了一個函數(shù) load_image_into_numpy_array 來加載從網(wǎng)上下載圖片的圖片,并將其轉換為模型可以適配的輸入類型。
(6)IMAGES_FOR_TEST 字典中記錄了多個可以用來測試的圖片,但是這些都是在網(wǎng)上,用的使用需要調(diào)用 load_image_into_numpy_array 函數(shù)。
(7)COCO17_HUMAN_POSE_KEYPOINTS 記錄了人體姿態(tài)關鍵點。
(8)我們這里展示了 dogs 這張圖片,可以看到兩條可愛的小狗。
def load_image_into_numpy_array(path): image = None if(path.startswith('http')): response = urlopen(path) image_data = response.read() image_data = BytesIO(image_data) image = Image.open(image_data) else: image_data = tf.io.gfile.GFile(path, 'rb').read() image = Image.open(BytesIO(image_data)) (im_width, im_height) = image.size return np.array(image.getdata()).reshape((1, im_height, im_width, 3)).astype(np.uint8) IMAGES_FOR_TEST = { 'Beach' : 'models/research/object_detection/test_images/image2.jpg', 'Dogs' : 'models/research/object_detection/test_images/image1.jpg', 'Naxos Taverna' : 'https://upload.wikimedia.org/wikipedia/commons/6/60/Naxos_Taverna.jpg', 'Beatles' : 'https://upload.wikimedia.org/wikipedia/commons/1/1b/The_Coleoptera_of_the_British_islands_%28Plate_125%29_%288592917784%29.jpg', 'Phones' : 'https://upload.wikimedia.org/wikipedia/commons/thumb/0/0d/Biblioteca_Maim%C3%B3nides%2C_Campus_Universitario_de_Rabanales_007.jpg/1024px-Biblioteca_Maim%C3%B3nides%2C_Campus_Universitario_de_Rabanales_007.jpg', 'Birds' : 'https://upload.wikimedia.org/wikipedia/commons/0/09/The_smaller_British_birds_%288053836633%29.jpg', } COCO17_HUMAN_POSE_KEYPOINTS = [(0, 1), (0, 2),(1, 3),(2, 4),(0, 5),(0, 6),(5, 7),(7, 9),(6, 8),(8, 10),(5, 6),(5, 11), (6, 12),(11, 12),(11, 13),(13, 15),(12, 14),(14, 16)] %matplotlib inline selected_image = 'Dogs' image_path = IMAGES_FOR_TEST[selected_image] image_np = load_image_into_numpy_array(image_path) plt.figure(figsize=(24,32)) plt.imshow(image_np[0]) plt.show()
目標檢測
我們這里將經(jīng)過處理的小狗的圖片傳入模型中,會返回結果,我們只要使用結果來繪制出所檢測目標的框,以及對應的類別,分數(shù),可以看出來結果是相當?shù)臏蚀_的,甚至通過人的腿就能識別出人的框。
results = hub_model(image_np) result = {key:value.numpy() for key,value in results.items()} label_id_offset = 0 image_np_with_detections = image_np.copy() keypoints, keypoint_scores = None, None if 'detection_keypoints' in result: keypoints = result['detection_keypoints'][0] keypoint_scores = result['detection_keypoint_scores'][0] viz_utils.visualize_boxes_and_labels_on_image_array( image_np_with_detections[0], result['detection_boxes'][0], (result['detection_classes'][0] + label_id_offset).astype(int), result['detection_scores'][0], category_index, use_normalized_coordinates=True, max_boxes_to_draw=200, min_score_thresh=.30, agnostic_mode=False, keypoints=keypoints, keypoint_scores=keypoint_scores, keypoint_edges=COCO17_HUMAN_POSE_KEYPOINTS) plt.figure(figsize=(24,32)) plt.imshow(image_np_with_detections[0]) plt.show()
以上就是使用Tensorflow hub完成目標檢測過程詳解的詳細內(nèi)容,更多關于Tensorflow hub目標檢測的資料請關注腳本之家其它相關文章!
相關文章
Python Numpy中數(shù)據(jù)的常用保存與讀取方法
這篇文章主要介紹了Python Numpy中數(shù)據(jù)的常用保存與讀取方法,本文給大家介紹的非常詳細,對大家的學習或工作具有一定的參考借鑒價值,需要的朋友可以參考下2020-04-04python定時按日期備份MySQL數(shù)據(jù)并壓縮
這篇文章主要為大家詳細介紹了python定時按日期備份MySQL數(shù)據(jù)并壓縮,具有一定的參考價值,感興趣的小伙伴們可以參考一下2019-04-04Python基于pyjnius庫實現(xiàn)訪問java類
這篇文章主要介紹了Python基于pyjnius庫實現(xiàn)訪問java類,文中通過示例代碼介紹的非常詳細,對大家的學習或者工作具有一定的參考學習價值,需要的朋友可以參考下2020-07-07