Python利用scikit-learn實(shí)現(xiàn)近鄰算法分類的示例詳解
scikit-learn庫
scikit-learn已經(jīng)封裝好很多數(shù)據(jù)挖掘的算法
現(xiàn)介紹數(shù)據(jù)挖掘框架的搭建方法
1.轉(zhuǎn)換器(Transformer)用于數(shù)據(jù)預(yù)處理,數(shù)據(jù)轉(zhuǎn)換
2.流水線(Pipeline)組合數(shù)據(jù)挖掘流程,方便再次使用(封裝)
3.估計(jì)器(Estimator)用于分類,聚類,回歸分析(各種算法對象)
所有的估計(jì)器都有下面2個(gè)函數(shù)
fit() 訓(xùn)練
用法:estimator.fit(X_train, y_train)
estimator = KNeighborsClassifier() 是scikit-learn算法對象
X_train = dataset.data 是numpy數(shù)組
y_train = dataset.target 是numpy數(shù)組
predict() 預(yù)測
用法:estimator.predict(X_test)
estimator = KNeighborsClassifier() 是scikit-learn算法對象
X_test = dataset.data 是numpy數(shù)組
示例
%matplotlib inline # Ionosphere數(shù)據(jù)集 # https://archive.ics.uci.edu/ml/machine-learning-databases/ionosphere/ # 下載ionosphere.data和ionosphere.names文件,放在 ./data/Ionosphere/ 目錄下 import os home_folder = os.path.expanduser("~") print(home_folder) # home目錄 # Change this to the location of your dataset home_folder = "." # 改為當(dāng)前目錄 data_folder = os.path.join(home_folder, "data") print(data_folder) data_filename = os.path.join(data_folder, "ionosphere.data") print(data_filename) import csv import numpy as np
# Size taken from the dataset and is known已知數(shù)據(jù)集形狀 X = np.zeros((351, 34), dtype='float') y = np.zeros((351,), dtype='bool') with open(data_filename, 'r') as input_file: reader = csv.reader(input_file) for i, row in enumerate(reader): # Get the data, converting each item to a float data = [float(datum) for datum in row[:-1]] # Set the appropriate row in our dataset用真實(shí)數(shù)據(jù)覆蓋掉初始化的0 X[i] = data # 1 if the class is 'g', 0 otherwise y[i] = row[-1] == 'g' # 相當(dāng)于if row[-1]=='g': y[i]=1 else: y[i]=0
# 數(shù)據(jù)預(yù)處理 from sklearn.cross_validation import train_test_split X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=14) print("訓(xùn)練集數(shù)據(jù)有 {} 條".format(X_train.shape[0])) print("測試集數(shù)據(jù)有 {} 條".format(X_test.shape[0])) print("每條數(shù)據(jù)有 {} 個(gè)features".format(X_train.shape[1]))
輸出:
訓(xùn)練集數(shù)據(jù)有 263 條
測試集數(shù)據(jù)有 88 條
每條數(shù)據(jù)有 34 個(gè)features
# 實(shí)例化算法對象->訓(xùn)練->預(yù)測->評價(jià) from sklearn.neighbors import KNeighborsClassifier estimator = KNeighborsClassifier() estimator.fit(X_train, y_train) y_predicted = estimator.predict(X_test) accuracy = np.mean(y_test == y_predicted) * 100 print("準(zhǔn)確率 {0:.1f}%".format(accuracy)) # 其他評價(jià)方式 from sklearn.cross_validation import cross_val_score scores = cross_val_score(estimator, X, y, scoring='accuracy') average_accuracy = np.mean(scores) * 100 print("平均準(zhǔn)確率 {0:.1f}%".format(average_accuracy)) avg_scores = [] all_scores = [] parameter_values = list(range(1, 21)) # Including 20 for n_neighbors in parameter_values: estimator = KNeighborsClassifier(n_neighbors=n_neighbors) scores = cross_val_score(estimator, X, y, scoring='accuracy') avg_scores.append(np.mean(scores)) all_scores.append(scores)
輸出:
準(zhǔn)確率 86.4%
平均準(zhǔn)確率 82.3%
from matplotlib import pyplot as plt plt.figure(figsize=(32,20)) plt.plot(parameter_values, avg_scores, '-o', linewidth=5, markersize=24) #plt.axis([0, max(parameter_values), 0, 1.0])
for parameter, scores in zip(parameter_values, all_scores): n_scores = len(scores) plt.plot([parameter] * n_scores, scores, '-o')
plt.plot(parameter_values, all_scores, 'bx')
from collections import defaultdict all_scores = defaultdict(list) parameter_values = list(range(1, 21)) # Including 20 for n_neighbors in parameter_values: for i in range(100): estimator = KNeighborsClassifier(n_neighbors=n_neighbors) scores = cross_val_score(estimator, X, y, scoring='accuracy', cv=10) all_scores[n_neighbors].append(scores) for parameter in parameter_values: scores = all_scores[parameter] n_scores = len(scores) plt.plot([parameter] * n_scores, scores, '-o')
plt.plot(parameter_values, avg_scores, '-o')
以上就是Python利用scikit-learn實(shí)現(xiàn)近鄰算法分類的示例詳解的詳細(xì)內(nèi)容,更多關(guān)于Python scikit-learn近鄰算法分類的資料請關(guān)注腳本之家其它相關(guān)文章!
相關(guān)文章
Python使用QQ郵箱發(fā)送郵件實(shí)例與QQ郵箱設(shè)置詳解
這篇文章主要介紹了Python發(fā)送QQ郵件實(shí)例與QQ郵箱設(shè)置詳解,需要的朋友可以參考下2020-02-02Python實(shí)現(xiàn)爬取某站視頻彈幕并繪制詞云圖
這篇文章主要介紹了利用Python爬取某站的視頻彈幕,并將其繪制成詞云圖,文中的示例代碼講解詳細(xì),對我學(xué)習(xí)Python爬蟲有一定的幫助,需要的朋友可以參考一下2021-12-12Python argparse命令參數(shù)與config配置參數(shù)示例深入詳解
這篇文章主要介紹了Python argparse命令參數(shù)與config配置參數(shù),argparse是Python內(nèi)置的一個(gè)用于命令項(xiàng)選項(xiàng)與參數(shù)解析的模塊,通過在程序中定義好我們需要的參數(shù),然后在程序啟動(dòng)命令行傳遞我們想要改變的參數(shù)2023-03-03Python計(jì)算雙重差分模型DID及其對應(yīng)P值使用詳解
這篇文章主要介紹了Python計(jì)算DID及其對應(yīng)P值的使用詳解,有需要的朋友可以借鑒參考下,希望能夠有所幫助,祝大家多多進(jìn)步早日升職加薪2021-09-09Python計(jì)算程序運(yùn)行時(shí)間的方法
這篇文章主要介紹了Python計(jì)算程序運(yùn)行時(shí)間的方法,分別記錄起始時(shí)間與結(jié)束時(shí)間,計(jì)算兩者之間的差值來獲得程序的運(yùn)行時(shí)間,需要的朋友可以參考下2014-12-12Django框架實(shí)現(xiàn)逆向解析url的方法
這篇文章主要介紹了Django框架實(shí)現(xiàn)逆向解析url的方法,結(jié)合實(shí)例形式分析了Django逆向解析URL的原理、步驟、相關(guān)實(shí)現(xiàn)技巧與注意事項(xiàng),需要的朋友可以參考下2018-07-07