詳解Pytorch中Dataset的使用
此案例教我們加載并處理TorchVision的FashionMNIST Dataset。
root 目錄是 train/test data 存儲的地方
download=True 如果root目錄沒有,則從網(wǎng)上下載
transform and target_transform specify the feature and label transformations
import torch from torch.utils.data import Dataset from torchvision import datasets from torchvision.transforms import ToTensor import matplotlib.pyplot as plt training_data = datasets.FashionMNIST( root="data", train=True, download=True, transform=ToTensor() ) test_data = datasets.FashionMNIST( root="data", train=False, download=True, transform=ToTensor() )
運行得到的結(jié)果是這樣的:
遍歷并可視化數(shù)據(jù)集
給數(shù)據(jù)集手動加上序號sample_idx,并用matplotlib進行繪制:
labels_map = { 0: "T-Shirt", 1: "Trouser", 2: "Pullover", 3: "Dress", 4: "Coat", 5: "Sandal", 6: "Shirt", 7: "Sneaker", 8: "Bag", 9: "Ankle Boot", } figure = plt.figure(figsize=(8, 8)) cols, rows = 3, 3 for i in range(1, cols * rows + 1): sample_idx = torch.randint(len(training_data), size=(1,)).item() img, label = training_data[sample_idx] figure.add_subplot(rows, cols, i) plt.title(labels_map[label]) plt.axis("off") plt.imshow(img.squeeze(), cmap="gray") plt.show()
traning_data
torch.randint(len(training_data), size=(1,)).item()
為我的文件自定義一個Dataset
一個自定義的Dataset必須有三個函數(shù):__init__, __len__, and __getitem__
圖片存儲在img_dir
import os import pandas as pd from torchvision.io import read_image class CustomImageDataset(Dataset): def __init__(self, annotations_file, img_dir, transform=None, target_transform=None): self.img_labels = pd.read_csv(annotations_file) self.img_dir = img_dir self.transform = transform self.target_transform = target_transform def __len__(self): return len(self.img_labels) def __getitem__(self, idx): img_path = os.path.join(self.img_dir, self.img_labels.iloc[idx, 0]) image = read_image(img_path) label = self.img_labels.iloc[idx, 1] if self.transform: image = self.transform(image) if self.target_transform: label = self.target_transform(label) return image, label
到此這篇關(guān)于詳解Pytorch中Dataset的使用的文章就介紹到這了,更多相關(guān)Pytorch Dataset使用內(nèi)容請搜索腳本之家以前的文章或繼續(xù)瀏覽下面的相關(guān)文章希望大家以后多多支持腳本之家!
相關(guān)文章

Python函數(shù)可變參數(shù)定義及其參數(shù)傳遞方式實例詳解