pytorch?K折交叉驗證過程說明及實現方式
K折交叉交叉驗證的過程如下
以200條數據,十折交叉驗證為例子,十折也就是將數據分成10組,進行10組訓練,每組用于測試的數據為:數據總條數/組數,即每組20條用于valid,180條用于train,每次valid的都是不同的。
(1)將200條數據,分成按照 數據總條數/組數(折數),進行切分。然后取出第i份作為第i次的valid,剩下的作為train
(2)將每組中的train數據利用DataLoader和Dataset,進行封裝。
(3)將train數據用于訓練,epoch可以自己定義,然后利用valid做驗證。得到一次的train_loss和 valid_loss。
(4)重復(2)(3)步驟,得到最終的 averge_train_loss和averge_valid_loss
上述過程如下圖所示:
上述的代碼如下:
import torch import torch.nn as nn from torch.utils.data import DataLoader,Dataset import torch.nn.functional as F from torch.autograd import Variable #####構造的訓練集#### x = torch.rand(100,28,28) y = torch.randn(100,28,28) x = torch.cat((x,y),dim=0) label =[1] *100 + [0]*100 label = torch.tensor(label,dtype=torch.long) ######網絡結構########## class Net(nn.Module): #定義Net def __init__(self): super(Net, self).__init__() self.fc1 = nn.Linear(28*28, 120) self.fc2 = nn.Linear(120, 84) self.fc3 = nn.Linear(84, 2) def forward(self, x): x = x.view(-1, self.num_flat_features(x)) x = F.relu(self.fc1(x)) x = F.relu(self.fc2(x)) x = self.fc3(x) return x def num_flat_features(self, x): size = x.size()[1:] num_features = 1 for s in size: num_features *= s return num_features ##########定義dataset########## class TraindataSet(Dataset): def __init__(self,train_features,train_labels): self.x_data = train_features self.y_data = train_labels self.len = len(train_labels) def __getitem__(self,index): return self.x_data[index],self.y_data[index] def __len__(self): return self.len ########k折劃分############ def get_k_fold_data(k, i, X, y): ###此過程主要是步驟(1) # 返回第i折交叉驗證時所需要的訓練和驗證數據,分開放,X_train為訓練數據,X_valid為驗證數據 assert k > 1 fold_size = X.shape[0] // k # 每份的個數:數據總條數/折數(組數) X_train, y_train = None, None for j in range(k): idx = slice(j * fold_size, (j + 1) * fold_size) #slice(start,end,step)切片函數 ##idx 為每組 valid X_part, y_part = X[idx, :], y[idx] if j == i: ###第i折作valid X_valid, y_valid = X_part, y_part elif X_train is None: X_train, y_train = X_part, y_part else: X_train = torch.cat((X_train, X_part), dim=0) #dim=0增加行數,豎著連接 y_train = torch.cat((y_train, y_part), dim=0) #print(X_train.size(),X_valid.size()) return X_train, y_train, X_valid,y_valid def k_fold(k, X_train, y_train, num_epochs=3,learning_rate=0.001, weight_decay=0.1, batch_size=5): train_loss_sum, valid_loss_sum = 0, 0 train_acc_sum ,valid_acc_sum = 0,0 for i in range(k): data = get_k_fold_data(k, i, X_train, y_train) # 獲取k折交叉驗證的訓練和驗證數據 net = Net() ### 實例化模型 ### 每份數據進行訓練,體現步驟三#### train_ls, valid_ls = train(net, *data, num_epochs, learning_rate,\ weight_decay, batch_size) print('*'*25,'第',i+1,'折','*'*25) print('train_loss:%.6f'%train_ls[-1][0],'train_acc:%.4f\n'%valid_ls[-1][1],\ 'valid loss:%.6f'%valid_ls[-1][0],'valid_acc:%.4f'%valid_ls[-1][1]) train_loss_sum += train_ls[-1][0] valid_loss_sum += valid_ls[-1][0] train_acc_sum += train_ls[-1][1] valid_acc_sum += valid_ls[-1][1] print('#'*10,'最終k折交叉驗證結果','#'*10) ####體現步驟四##### print('train_loss_sum:%.4f'%(train_loss_sum/k),'train_acc_sum:%.4f\n'%(train_acc_sum/k),\ 'valid_loss_sum:%.4f'%(valid_loss_sum/k),'valid_acc_sum:%.4f'%(valid_acc_sum/k)) #########訓練函數########## def train(net, train_features, train_labels, test_features, test_labels, num_epochs, learning_rate,weight_decay, batch_size): train_ls, test_ls = [], [] ##存儲train_loss,test_loss dataset = TraindataSet(train_features, train_labels) train_iter = DataLoader(dataset, batch_size, shuffle=True) ### 將數據封裝成 Dataloder 對應步驟(2) #這里使用了Adam優(yōu)化算法 optimizer = torch.optim.Adam(params=net.parameters(), lr= learning_rate, weight_decay=weight_decay) for epoch in range(num_epochs): for X, y in train_iter: ###分批訓練 output = net(X) loss = loss_func(output,y) optimizer.zero_grad() loss.backward() optimizer.step() ### 得到每個epoch的 loss 和 accuracy train_ls.append(log_rmse(0,net, train_features, train_labels)) if test_labels is not None: test_ls.append(log_rmse(1,net, test_features, test_labels)) #print(train_ls,test_ls) return train_ls, test_ls def log_rmse(flag,net,x,y): if flag == 1: ### valid 數據集 net.eval() output = net(x) result = torch.max(output,1)[1].view(y.size()) corrects = (result.data == y.data).sum().item() accuracy = corrects*100.0/len(y) #### 5 是 batch_size loss = loss_func(output,y) net.train() return (loss.data.item(),accuracy) loss_func = nn.CrossEntropyLoss() ###申明loss函 k_fold(10,x,label) ### k=10,十折交叉驗證
上述代碼中,直接按照順序從x中每次截取20條作為valid,也可以先打亂然后在截取,這樣效果應該會更好。
如下所示:
import random import torch x = torch.rand(100,28,28) y = torch.randn(100,28,28) x = torch.cat((x,y),dim=0) label =[1] *100 + [0]*100 label = torch.tensor(label,dtype=torch.long) index = [i for i in range(len(x))] random.shuffle(index) x = x[index] label = label[index]
交叉驗證區(qū)分k折代碼分析
from sklearn.model_selection import GroupKFold x = np.array([1,2,3,4,5,6,7,8,9,10]) y = np.array([1,2,3,4,5,6,7,8,9,10]) z = np.array(['hello1','hello2','hello3','hello4','hello5','hello6','hello7','hello8','hello9','hello10']) gkf = GroupKFold(n_splits = 5) for i,(train_idx,valid_idx) in enumerate(list(gkf.split(x,y,z))): #groups:object,Always ignored,exists for compatibility. print('train_idx = ') print(train_idx) print('valid_idx = ') print(valid_idx)
可以看出來首先train_idx以及valid_idx的相應值都是從中亂序提取的,其次每個相應值只提取一次,不會重復提取。
注意交叉驗證的流程:這里首先放一個對應的交叉驗證的圖片:
注意這里的訓練方式是每個初始化的模型分別訓練n折的數值,然后算出對應的權重內容
也就是說這里每一次計算對應的權重內容(1~n)的時候,需要將模型的權重初始化,然后再進行訓練,訓練最終結束之后,模型的權重為訓練完成之后的平均值,多模類似于模型融合
總結
以上為個人經驗,希望能給大家一個參考,也希望大家多多支持腳本之家。
相關文章
Java實現的執(zhí)行python腳本工具類示例【使用jython.jar】
這篇文章主要介紹了Java實現的執(zhí)行python腳本工具類,結合實例形式分析了java使用jython.jar執(zhí)行Python腳本的具體操作技巧,需要的朋友可以參考下2018-03-03