OpenCV圖像輪廓提取的實(shí)現(xiàn)
前言
常用的輪廓提取算法有:Canny、閾值分割、提取傅里葉變換的高頻信息,還有別具一格的蟻群算法,當(dāng)然比較常見的作法是使用閾值分割+邊緣查找,在OpenCV里是threshold和findContours兩個(gè)函數(shù)的組合使用,和Canny。
輪廓提取的算法很多,而其目的都是為了找到圖像中灰階差比較大的位置。而所謂亞像素提取,則是使用了插值算法,以找出灰階差最大的位置。
提取傅里葉變換的高頻信息
############## #圖像中的輪廓提取 #時(shí)間:2019/1/3 #作者:cclplus #僅供學(xué)習(xí)交流使用 #如有疑問或者需求,可以聯(lián)系作者的郵箱 #如果你有什么好的建議或者指導(dǎo),我將不勝感激 import cv2 import numpy as np from matplotlib import pyplot as plt import copy img = cv2.imread('liuyifei.jpg',0) f = np.fft.fft2(img) fshift = np.fft.fftshift(f) rows,cols = img.shape crow,ccol = int(rows/2) , int(cols/2) for i in range(crow-30,crow+30): for j in range(ccol-30,ccol+30): fshift[i][j]=0.0 f_ishift = np.fft.ifftshift(fshift) img_back = np.fft.ifft2(f_ishift)#進(jìn)行高通濾波 # 取絕對(duì)值 img_back = np.abs(img_back) plt.subplot(121),plt.imshow(img,cmap = 'gray')#因圖像格式問題,暫已灰度輸出 plt.title('Input Image'), plt.xticks([]), plt.yticks([]) #先對(duì)灰度圖像進(jìn)行伽馬變換,以提升暗部細(xì)節(jié) rows,cols = img_back.shape gamma=copy.deepcopy(img_back) rows=img.shape[0] cols=img.shape[1] for i in range(rows): for j in range(cols): gamma[i][j]=5.0*pow(gamma[i][j],0.34)#0.34這個(gè)參數(shù)是我手動(dòng)調(diào)出來的,根據(jù)不同的圖片,可以選擇不同的數(shù)值 #對(duì)灰度圖像進(jìn)行反轉(zhuǎn) for i in range(rows): for j in range(cols): gamma[i][j]=255-gamma[i][j] plt.subplot(122),plt.imshow(gamma,cmap = 'gray') plt.title('Result in HPF'), plt.xticks([]), plt.yticks([]) plt.show()
原圖
輸出結(jié)果
通過蟻群算法進(jìn)行圖片輪廓提取
相關(guān)代碼我上傳到了我的github上
https://github.com/YuruTu/Ant_colony
效果不夠理想,這也算得上蟻群算法的一大特點(diǎn),對(duì)參數(shù)要求較高,需要調(diào)參。相關(guān)內(nèi)容,筆者會(huì)持續(xù)更新
Canny邊緣檢測(cè)
import cv2 import numpy as np from matplotlib import pyplot as plt img = cv2.imread('liuyifei.jpg',0) edges = cv2.Canny(img,100,200) plt.subplot(121),plt.imshow(img,cmap='gray') plt.title('original'),plt.xticks([]),plt.yticks([]) plt.subplot(122),plt.imshow(edges,cmap='gray') plt.title('edge'),plt.xticks([]),plt.yticks([]) plt.show()
使用cuda加速提取輪廓
#include <iostream> #include <cuda.h> #include <cstdlib> #include <stdio.h> #include <cuda_runtime.h> #include <string> #include <assert.h> #include <cuda_runtime.h> #include <cuda_runtime_api.h> #include <device_launch_parameters.h> #include <opencv2/core/core.hpp> #include <opencv2/imgproc/imgproc.hpp> #include <opencv2/highgui/highgui.hpp> using namespace cv; using namespace std; // GPU constant memory to hold our kernels (extremely fast access time) __constant__ float convolutionKernelStore[256]; /** * Convolution funcion para cuda. Destino tendra el mismo width/height como la fuente, * * @param source Source imagen host * @param width Source imagen width * @param height Source imagen height * @param paddingX source imagen padding x * @param paddingY source imagen padding y * @param kOffset offset en kernel almacenamiento de memoria constante * @param kWidth kernel width * @param kHeight kernel height * @param destination Imagen de destino */ __global__ void convolve(unsigned char *source, int width, int height, int paddingX, int paddingY, unsigned int kOffset, int kWidth, int kHeight, unsigned char *destination) { // Calculate our pixel's location int x = (blockIdx.x * blockDim.x) + threadIdx.x; int y = (blockIdx.y * blockDim.y) + threadIdx.y; float sum = 0.0; int pWidth = kWidth / 2; int pHeight = kHeight / 2; //Solo ejecuta validos pixeles if (x >= pWidth + paddingX && y >= pHeight + paddingY && x < (blockDim.x * gridDim.x) - pWidth - paddingX && y < (blockDim.y * gridDim.y) - pHeight - paddingY) { for (int j = -pHeight; j <= pHeight; j++) { for (int i = -pWidth; i <= pWidth; i++) { // Sample the weight for this location int ki = (i + pWidth); int kj = (j + pHeight); float w = convolutionKernelStore[(kj * kWidth) + ki + kOffset]; sum += w * float(source[((y + j) * width) + (x + i)]); } } } // Promedio sum destination[(y * width) + x] = (unsigned char)sum; } __global__ void pythagoras(unsigned char *a, unsigned char *b, unsigned char *c) { int idx = (blockIdx.x * blockDim.x) + threadIdx.x; float af = float(a[idx]); float bf = float(b[idx]); c[idx] = (unsigned char)sqrtf(af*af + bf * bf); } // crea imagen buffer unsigned char* createImageBuffer(unsigned int bytes, unsigned char **devicePtr) { unsigned char *ptr = NULL; cudaSetDeviceFlags(cudaDeviceMapHost); cudaHostAlloc(&ptr, bytes, cudaHostAllocMapped); cudaHostGetDevicePointer(devicePtr, ptr, 0); return ptr; } int main(int argc, char** argv) { // Abre la camaraweb cv::VideoCapture camera(0); cv::Mat frame; if (!camera.isOpened()) return -1; // capture windows cv::namedWindow("Source"); cv::namedWindow("Greyscale"); cv::namedWindow("Blurred"); cv::namedWindow("Sobel"); // Funciones para obtener el tiempo de ejecucion cudaEvent_t start, stop; cudaEventCreate(&start); cudaEventCreate(&stop); // Crea kernel gaussian(sum = 159) const float gaussianKernel5x5[25] = { 2.f / 159.f, 4.f / 159.f, 5.f / 159.f, 4.f / 159.f, 2.f / 159.f, 4.f / 159.f, 9.f / 159.f, 12.f / 159.f, 9.f / 159.f, 4.f / 159.f, 5.f / 159.f, 12.f / 159.f, 15.f / 159.f, 12.f / 159.f, 5.f / 159.f, 4.f / 159.f, 9.f / 159.f, 12.f / 159.f, 9.f / 159.f, 4.f / 159.f, 2.f / 159.f, 4.f / 159.f, 5.f / 159.f, 4.f / 159.f, 2.f / 159.f, }; cudaMemcpyToSymbol(convolutionKernelStore, gaussianKernel5x5, sizeof(gaussianKernel5x5), 0); const unsigned int gaussianKernel5x5Offset = 0; // Sobel gradient kernels const float sobelGradientX[9] = { -1.f, 0.f, 1.f, -2.f, 0.f, 2.f, -1.f, 0.f, 1.f, }; const float sobelGradientY[9] = { 1.f, 2.f, 1.f, 0.f, 0.f, 0.f, -1.f, -2.f, -1.f, }; cudaMemcpyToSymbol(convolutionKernelStore, sobelGradientX, sizeof(sobelGradientX), sizeof(gaussianKernel5x5)); cudaMemcpyToSymbol(convolutionKernelStore, sobelGradientY, sizeof(sobelGradientY), sizeof(gaussianKernel5x5) + sizeof(sobelGradientX)); const unsigned int sobelGradientXOffset = sizeof(gaussianKernel5x5) / sizeof(float); const unsigned int sobelGradientYOffset = sizeof(sobelGradientX) / sizeof(float) + sobelGradientXOffset; // Crea CPU/GPU imagenes compartidos camera >> frame; unsigned char *sourceDataDevice, *blurredDataDevice, *edgesDataDevice; cv::Mat source(frame.size(), CV_8U, createImageBuffer(frame.size().width * frame.size().height, &sourceDataDevice)); cv::Mat blurred(frame.size(), CV_8U, createImageBuffer(frame.size().width * frame.size().height, &blurredDataDevice)); cv::Mat edges(frame.size(), CV_8U, createImageBuffer(frame.size().width * frame.size().height, &edgesDataDevice)); // Crea 2 imagenes temporales (sobel gradients) unsigned char *deviceGradientX, *deviceGradientY; cudaMalloc(&deviceGradientX, frame.size().width * frame.size().height); cudaMalloc(&deviceGradientY, frame.size().width * frame.size().height); // Loop while captura imagenes while (1) { // Captura la imagen en escala de grises camera >> frame; cvtColor(frame, source, COLOR_RGB2GRAY); _sleep(1); // Graba el tiempo que demora el proceso cudaEventRecord(start); { // convolution kernel parametros dim3 cblocks(frame.size().width / 16, frame.size().height / 16); dim3 cthreads(16, 16); // pythagoran kernel parametros dim3 pblocks(frame.size().width * frame.size().height / 256); dim3 pthreads(256, 1); // gaussian blur (first kernel in store @ 0) convolve <<<cblocks, cthreads >> > (sourceDataDevice, frame.size().width, frame.size().height, 0, 0, gaussianKernel5x5Offset, 5, 5, blurredDataDevice); // sobel gradient convolutions (x&y padding is now 2 because there is a border of 2 around a 5x5 gaussian filtered image) convolve << <cblocks, cthreads >> > (blurredDataDevice, frame.size().width, frame.size().height, 2, 2, sobelGradientXOffset, 3, 3, deviceGradientX); convolve << <cblocks, cthreads >> > (blurredDataDevice, frame.size().width, frame.size().height, 2, 2, sobelGradientYOffset, 3, 3, deviceGradientY); pythagoras << <pblocks, pthreads >> > (deviceGradientX, deviceGradientY, edgesDataDevice); cudaThreadSynchronize(); } cudaEventRecord(stop); // Muestra tiempo de ejecucion float ms = 0.0f; cudaEventSynchronize(stop); cudaEventElapsedTime(&ms, start, stop); std::cout << "Elapsed GPU time: " << ms << " milliseconds" << std::endl; // Muestra resultados imshow("Source", frame); imshow("Greyscale", source); imshow("Blurred", blurred); imshow("Sobel", edges); // Spin if (cv::waitKey(1) == 27) break; } // Exit cudaFreeHost(source.data); cudaFreeHost(blurred.data); cudaFreeHost(edges.data); cudaFree(deviceGradientX); cudaFree(deviceGradientY); return 0; }
很多時(shí)候加上Cuda是有必要的,如果你要使用hough變換之類的時(shí)間復(fù)雜度比較高的代碼,Gpu編程會(huì)給你帶來多個(gè)數(shù)量級(jí)的加速。
到此這篇關(guān)于OpenCV圖像輪廓提取的實(shí)現(xiàn)的文章就介紹到這了,更多相關(guān)OpenCV圖像輪廓提取內(nèi)容請(qǐng)搜索腳本之家以前的文章或繼續(xù)瀏覽下面的相關(guān)文章希望大家以后多多支持腳本之家!
相關(guān)文章
C語言中隊(duì)列的結(jié)構(gòu)和函數(shù)接口的使用示例
隊(duì)列只允許一端進(jìn)行插入數(shù)據(jù)操作,在另一端進(jìn)行刪除數(shù)據(jù)操作的特殊線性表,隊(duì)列具有先進(jìn)先出FIFO的性質(zhì);隊(duì)列可用數(shù)組和鏈表 的方法實(shí)現(xiàn),使用鏈表的結(jié)構(gòu)實(shí)現(xiàn)更優(yōu)一些,因?yàn)槿绻褂脭?shù)組節(jié),出隊(duì)列時(shí)刪去首元素需要將整個(gè)數(shù)組前移,效率比較低2023-02-02C語言實(shí)現(xiàn)學(xué)生管理系統(tǒng)
這篇文章主要為大家詳細(xì)介紹了C語言實(shí)現(xiàn)學(xué)生管理系統(tǒng),文中示例代碼介紹的非常詳細(xì),具有一定的參考價(jià)值,感興趣的小伙伴們可以參考一下2020-02-02C語言數(shù)據(jù)結(jié)構(gòu)線性表教程示例詳解
這篇文章主要為大家介紹了C語言數(shù)據(jù)結(jié)構(gòu)線性表的示例詳解,有需要的朋友可以借鑒參考下,希望能夠有所幫助,祝大家多多進(jìn)步,早日升職加薪2022-02-02string中c_str(),data(),copy(p,n)函數(shù)的用法總結(jié)
以下是對(duì)string中c_str(),data(),copy(p,n)函數(shù)的用法進(jìn)行了詳細(xì)的介紹,需要的朋友可以過來參考下2013-09-09C++?LeetCode1827題解最少操作使數(shù)組遞增
這篇文章主要為大家介紹了C++?LeetCode1827題解最少操作使數(shù)組遞增示例詳解,有需要的朋友可以借鑒參考下,希望能夠有所幫助,祝大家多多進(jìn)步,早日升職加薪2022-12-12《C++ Primer》隱式類類型轉(zhuǎn)換學(xué)習(xí)整理
在本篇文章里小編給大家整理的是關(guān)于《C++ Primer》隱式類類型轉(zhuǎn)換學(xué)習(xí)筆記內(nèi)容,需要的朋友們參考下。2020-02-02