基于Java實現(xiàn)圖片相似度對比的示例代碼
前言
很多時候我們需要將兩個圖片進行對比,確定兩個圖片的相似度。一般常用的就是openCv庫,這里就是使用openCv進行圖片相似度對比。
依賴
<dependency> <groupId>org.bytedeco</groupId> <artifactId>javacv</artifactId> <version>1.3.3</version> </dependency> <dependency> <groupId>org.bytedeco</groupId> <artifactId>javacv-platform</artifactId> <version>1.3.3</version> </dependency>
基本算法
基本算法
1、判斷高度是否一致,如果不一致,需要截取到高度一致
2、截取算法
a、因為圖片有通用的頂部bar和底部bar,需要先找到底部bar。
b、截取長圖片的部分,然后和底部bar拼接,就完成了圖片截取。
c、這里設置一個默認的寬度,然后對比,找到相同部分,就是底部bar。
相關代碼
package com.test.image; import org.bytedeco.javacpp.BytePointer; import org.bytedeco.javacpp.opencv_core; import org.slf4j.Logger; import org.slf4j.LoggerFactory; import static org.bytedeco.javacpp.opencv_core.*; import static org.bytedeco.javacpp.opencv_imgcodecs.imread; import static org.bytedeco.javacpp.opencv_imgcodecs.imwrite; import static org.bytedeco.javacpp.opencv_imgproc.*; import static org.bytedeco.javacpp.opencv_imgproc.THRESH_BINARY; public class ImageService { private static Logger Log = LoggerFactory.getLogger(ImageService.class); public static void compareImage( String targetImageUrl, String baseImageUrl ){ /** * 讀取圖片到數(shù)組 */ opencv_core.Mat targetImage = imread(targetImageUrl); opencv_core.Mat baseImage = imread(baseImageUrl); Log.info("read image success"); /** * 首先對比的兩個圖片寬度要一致,否則不能對比 */ if(targetImage.size().width()==baseImage.size().width()){ /** * 基本算法 * 1、判斷高度是否一致,如果不一致,需要截取到高度一致 * 2、截取算法 * a、因為圖片有通用的頂部bar和底部bar,需要先找到底部bar。 * b、截取長圖片的部分,然后和底部bar拼接,就完成了圖片截取。 * c、這里設置一個默認的寬度,然后對比,找到相同部分,就是底部bar。 */ if(targetImage.size().height()!=baseImage.size().height()){ if(targetImage.size().height()>baseImage.size().height()){ targetImage = dealLongImage(targetImage.clone(),baseImage.clone()); } else { baseImage = dealLongImage(baseImage.clone(),targetImage.clone()); } } /** * 進行圖片差異對比 */ Mat imageDiff = compareImage(targetImage,baseImage); double nonZeroPercent = 100 * (double) countNonZero(imageDiff) / (imageDiff.size().height() * imageDiff.size().width()); /** * 展示圖片,將標準圖,對比圖,差異圖,拼接成一張大圖。 * 其中差異圖會用綠色標出差異的部分。 */ set3ImageTo1("", targetImage, baseImage, showDiff(imageDiff, baseImage), "xxxx.jpg" ); imageDiff.release(); baseImage.release(); targetImage.release(); } else { } } /** * 2、截取算法 * a、因為圖片有通用的頂部bar和底部bar,需要先找到底部bar。 * b、截取長圖片的部分,然后和底部bar拼接,就完成了圖片截取。 * c、這里設置一個默認的寬度,然后對比,找到相同部分,就是底部bar。 * @return bar的高度 */ public static int interceptBarHeight( Mat longImage, Mat shortImage ){ /** * 設置的默認高度。 */ int imageSearchMaxHeight = 400; Mat subImageLong = new Mat(longImage, new Rect(0, longImage.size().height() - imageSearchMaxHeight, longImage.size().width(), imageSearchMaxHeight)); Mat subImageShort = new Mat(shortImage, new Rect(0, shortImage.size().height() - imageSearchMaxHeight, shortImage.size().width(), imageSearchMaxHeight)); opencv_core.Mat imageDiff = compareImage(subImageLong,subImageShort); for (int row = imageDiff.size().height() - 1; row > -1; row--) { for (int col = 0; col < imageDiff.size().width(); col++) { BytePointer bytePointer = imageDiff.ptr(row, col); if (bytePointer.get(0) != 0) { imageDiff.release(); return imageSearchMaxHeight-row; } } } return imageSearchMaxHeight; } /** * 這里將兩張圖片作為參數(shù)傳入, * 獲取到共同的底部之后。對長圖進行截取, * 然后將頂部和底部拼接在一起就ok了。 * @param longImage * @param shortImage * @return */ public static opencv_core.Mat dealLongImage( Mat longImage, Mat shortImage ){ int diffHeight = longImage.size().height()-shortImage.size().height(); int barHeight = interceptBarHeight(longImage,shortImage); opencv_core.Mat dealedLongImage = new Mat(longImage,new Rect(0,0,longImage.size().width(),shortImage.size().height()-barHeight) ); opencv_core.Mat imageBar = new Mat(longImage,new Rect(0,longImage.size().height()-barHeight,longImage.size().width(),barHeight) ); opencv_core.Mat dealedLongImageNew = dealedLongImage.clone(); /** * 將頭部和底部bar拼接在一起。 */ vconcat(dealedLongImage, imageBar, dealedLongImageNew); imageBar.release(); dealedLongImage.release(); return dealedLongImageNew; } public static opencv_core.Mat compareImage( opencv_core.Mat targetImage, opencv_core.Mat baseImage ){ opencv_core.Mat targetImageClone = targetImage.clone(); opencv_core.Mat baseImageColne = baseImage.clone(); opencv_core.Mat imgDiff1 = targetImage.clone(); opencv_core.Mat imgDiff = targetImage.clone(); /** * 首先將圖片轉成灰度圖, */ cvtColor(targetImage, targetImageClone, COLOR_BGR2GRAY); cvtColor(baseImage, baseImageColne, COLOR_BGR2GRAY); /** * 兩個矩陣相減,獲得差異圖。 */ subtract(targetImageClone, baseImageColne, imgDiff1); subtract(baseImageColne, targetImageClone, imgDiff); /** * 按比重進行疊加。 */ addWeighted(imgDiff, 1, imgDiff1, 1, 0, imgDiff); /** * 圖片二值化,大于24的為1,小于24的為0 */ threshold(imgDiff, imgDiff, 24, 255, THRESH_BINARY); erode(imgDiff, imgDiff, new opencv_core.Mat()); dilate(imgDiff, imgDiff, new opencv_core.Mat()); return imgDiff; } private static void set3ImageTo1(String logTag, Mat imageSrc, Mat imageBaseSrc, Mat imageDest, String mergePicResult ) { if (imageSrc.size().width() == imageDest.size().width() && imageBaseSrc.size().height() == imageDest.size().height()) { Mat img = imageSrc.clone(); Mat imgBase = imageBaseSrc.clone(); Mat imgDest = imageDest.clone(); Mat imgLine = new Mat(imgBase.size().height(), 1, CV_8UC3, new Scalar(0, 0, 0, 255)); Mat largeImg2 = new Mat(); Mat largeImg3 = new Mat(); Mat largeImg4 = new Mat(); Mat largeImg5 = new Mat(); /** * 橫向拼接。 */ hconcat(img, imgLine, largeImg2); hconcat(largeImg2, imgBase, largeImg3); hconcat(largeImg3, imgLine, largeImg4); hconcat(largeImg4, imgDest, largeImg5); imwrite( mergePicResult, largeImg5); img.release(); imgBase.release(); imgDest.release(); imgLine.release(); largeImg2.release(); largeImg3.release(); largeImg4.release(); largeImg5.release(); } else { Log.info(logTag+" pictures merge failed"); imwrite( mergePicResult, imageDest); } } private static Mat showDiff(Mat imgDiff, Mat imgBase) { MatVector rgbFrame = new MatVector(); Mat imgDest = imgBase.clone(); split(imgBase, rgbFrame); subtract(rgbFrame.get(2), imgDiff, rgbFrame.get(2)); subtract(rgbFrame.get(0), imgDiff, rgbFrame.get(0)); addWeighted(rgbFrame.get(1), 1, imgDiff, 1, 0, rgbFrame.get(1)); merge(rgbFrame, imgDest); return imgDest; } public static void main( String[] args ){ String targetImageUrl = "2022-03-15-11-37-35-2ouA9yi9gjsGWHDAoaZTaNe4awr0xSlohFq0gF0m.png"; String baseImageUrl = "2022-03-15-11-37-38-njH2kVzd3boX1i8q8bLCfnnIj8xTLyHhHufgs9rp.png"; compareImage(targetImageUrl,baseImageUrl); } }
到此這篇關于基于Java實現(xiàn)圖片相似度對比的示例代碼的文章就介紹到這了,更多相關Java圖片相似度對比內容請搜索腳本之家以前的文章或繼續(xù)瀏覽下面的相關文章希望大家以后多多支持腳本之家!
相關文章
Springboot整合quartz實現(xiàn)多個定時任務實例
這篇文章主要介紹了Springboot整合quartz實現(xiàn)多個定時任務代碼實例,Quartz?是一款功能強大的開源任務調度框架,幾乎可以集成到任何?Java?應用程序中,Quartz?可用于創(chuàng)建簡單或復雜的任務調度,用以執(zhí)行數(shù)以萬計的任務,需要的朋友可以參考下2023-08-08springboot使用國產(chǎn)加密算法方式,sm2和sm3加解密demo
這篇文章主要介紹了springboot使用國產(chǎn)加密算法方式,sm2和sm3加解密demo,具有很好的參考價值,希望對大家有所幫助。如有錯誤或未考慮完全的地方,望不吝賜教2023-07-07Mybatis-Plus雪花id的使用以及解析機器ID和數(shù)據(jù)標識ID實現(xiàn)
這篇文章主要介紹了Mybatis-Plus雪花id的使用以及解析機器ID和數(shù)據(jù)標識ID實現(xiàn),文中通過示例代碼介紹的非常詳細,對大家的學習或者工作具有一定的參考學習價值,需要的朋友們下面隨著小編來一起學習學習吧2020-08-08