networkx庫繪制帶權(quán)圖給無權(quán)圖加權(quán)重輸出
問題
最近在研究圖學(xué)習(xí),在用networkx庫繪圖的時(shí)候發(fā)現(xiàn)問題。
''' author:zheng time:2020.10.23 ''' import networkx as nx import random g = nx.karate_club_graph() # 空手道俱樂部 for u,v in g.edges: print(u,v) g.add_edge(u, v, weight=random.uniform(0, 1)) # 權(quán)值為(0,1)間的隨機(jī)數(shù) print(g.edges())
輸出結(jié)果
[(0, 1), (0, 2), (0, 3), (0, 4), (0, 5), (0, 6), (0, 7), (0, 8), (0, 10), (0, 11), (0, 12), (0, 13), (0, 17), (0, 19), (0, 21), (0, 31), (1, 2), (1, 3), (1, 7), (1, 13), (1, 17), (1, 19), (1, 21), (1, 30), (2, 3), (2, 7), (2, 8), (2, 9), (2, 13), (2, 27), (2, 28), (2, 32), (3, 7), (3, 12), (3, 13), (4, 6), (4, 10), (5, 6), (5, 10), (5, 16), (6, 16), (8, 30), (8, 32), (8, 33), (13, 33), (19, 33), (31, 24), (31, 25), (31, 28), (31, 32), (31, 33), (30, 32), (30, 33), (9, 33), (27, 23), (27, 24), (27, 33), (28, 33), (32, 14), (32, 15), (32, 18), (32, 20), (32, 22), (32, 23), (32, 29), (32, 33), (33, 14), (33, 15), (33, 18), (33, 20), (33, 22), (33, 23), (33, 26), (33, 29), (23, 25), (23, 29), (25, 24), (29, 26)]
發(fā)現(xiàn)了問題,我明明通過random.uniform(0, 1)隨機(jī)設(shè)置了權(quán)重為什么在結(jié)果輸出中并未顯示,是輸入權(quán)重的問題,還是結(jié)果展示的問題。
''' author:zheng time:2020.10.23 ''' import networkx as nx import random g = nx.karate_club_graph() # 空手道俱樂部 for u,v in g.edges: g.add_edge(u, v, weight=random.uniform(0, 1)) # 權(quán)值為(0,1)間的隨機(jī)數(shù) print(g.edges(data=True))
大家看看兩個(gè)代碼有沒有什么不同,在G.edges(data=True)中添加了data=True
此時(shí)輸出結(jié)果:
[(0, 1, {'weight': 0.49899129531032826}), (0, 2, {'weight': 0.7493395367183026}), (0, 3, {'weight': 0.9805046801748599}), (0, 4, {'weight': 0.644560549909913}), (0, 5, {'weight': 0.022461095194206915}), (0, 6, {'weight': 0.39855273941801683}), (0, 7, {'weight': 0.9167666610641618}), (0, 8, {'weight': 0.3736839965822629}), (0, 10, {'weight': 0.1685687039463848}), (0, 11, {'weight': 0.5900599708379352}), (0, 12, {'weight': 0.49772285717726605}), (0, 13, {'weight': 0.6988903320924684}), (0, 17, {'weight': 0.8108991409995218}), (0, 19, {'weight': 0.21743421569163335}), (0, 21, {'weight': 0.687637570308398}), (0, 31, {'weight': 0.13180440967486262}), (1, 2, {'weight': 0.0603379086168323}), (1, 3, {'weight': 0.9536653778354264}), (1, 7, {'weight': 0.1680232359702576}), (1, 13, {'weight': 0.23821372652905115}), (1, 17, {'weight': 0.6861169007257469}), (1, 19, {'weight': 0.006553274592374314}), (1, 21, {'weight': 0.23452495215883118}), (1, 30, {'weight': 0.7638165639559286}), (2, 3, {'weight': 0.18381620307197954}), (2, 7, {'weight': 0.08671998389998026}), (2, 8, {'weight': 0.7395899045684956}), (2, 9, {'weight': 0.5973616237830935}), (2, 13, {'weight': 0.25253256663029156}), (2, 27, {'weight': 0.4151629971620948}), (2, 28, {'weight': 0.6830413630275037}), (2, 32, {'weight': 0.10877354662752325}), (3, 7, {'weight': 0.3165078261209674}), (3, 12, {'weight': 0.3258985972202395}), (3, 13, {'weight': 0.5617183737707032}), (4, 6, {'weight': 0.9944831897451706}), (4, 10, {'weight': 0.4258447405573552}), (5, 6, {'weight': 0.17102663345956715}), (5, 10, {'weight': 0.41020894392823837}), (5, 16, {'weight': 0.24048864347638477}), (6, 16, {'weight': 0.5401785263069063}), (8, 30, {'weight': 0.4604358340149278}), (8, 32, {'weight': 0.9601569527970788}), (8, 33, {'weight': 0.2905405465193912}), (13, 33, {'weight': 0.2556445407164615}), (19, 33, {'weight': 0.3008126988319231}), (31, 24, {'weight': 0.8781944129721222}), (31, 25, {'weight': 0.392828914742127}), (31, 28, {'weight': 0.7410701847068474}), (31, 32, {'weight': 0.39869250595380246}), (31, 33, {'weight': 0.4380052794486696}), (30, 32, {'weight': 0.4587792580500568}), (30, 33, {'weight': 0.5106934704075864}), (9, 33, {'weight': 0.9037424067215868}), (27, 23, {'weight': 0.9151325306454512}), (27, 24, {'weight': 0.6079907996445639}), (27, 33, {'weight': 0.6168782680542676}), (28, 33, {'weight': 0.9529880704286767}), (32, 14, {'weight': 0.21711370788129514}), (32, 15, {'weight': 0.21906480255644156}), (32, 18, {'weight': 0.36297161231472697}), (32, 20, {'weight': 0.8295507296873654}), (32, 22, {'weight': 0.725850047579389}), (32, 23, {'weight': 0.06395474428944792}), (32, 29, {'weight': 0.021001018687274553}), (32, 33, {'weight': 0.29227780907194645}), (33, 14, {'weight': 0.7898337840851372}), (33, 15, {'weight': 0.06574640956244104}), (33, 18, {'weight': 0.3193055980182168}), (33, 20, {'weight': 0.22814267912232755}), (33, 22, {'weight': 0.934928086748862}), (33, 23, {'weight': 0.8780586608909188}), (33, 26, {'weight': 0.834765093283264}), (33, 29, {'weight': 0.8927802653939352}), (23, 25, {'weight': 0.18106036608743914}), (23, 29, {'weight': 0.7824721548411848}), (25, 24, {'weight': 0.9362577071184671}), (29, 26, {'weight': 0.06557785001633887})]
如何只輸出權(quán)重
import networkx as nx import random g = nx.karate_club_graph() # 空手道俱樂部 for u,v in g.edges: g.add_edge(u, v, weight=random.uniform(0, 1)) # 權(quán)值為(0,1) for (u,v,d) in g.edges(data=True): print(d['weight'])
輸出結(jié)果
0.9175521740544361
0.09841104142600388
0.9557658899707079
0.9256010898041206
0.2519120041349847
0.48370396192288767
0.8354304958648846
0.758094795660556
0.7910256982243447
0.6281003207621544
0.9801420646231339
0.7941450155753779
0.3851720075568309
0.802202234860892
0.7923045754263267
0.5270583359776736
0.9523963539542339
0.7474601472346581
0.044707615637251674
0.5349188097983026
0.6158693844408302
0.9456154478628968
0.7547788968185274
0.5648525235741113
0.6657063624514532
0.3109915743055601
0.3969190047820317
0.8763009836310122
0.7101598558464499
0.012225959063178693
0.700579386399397
0.8304116006624506
0.426518724548162
0.07244870577629914
0.36116795615537345
0.45781457416039606
0.25726914791707645
0.29778955309109023
0.8892096639219873
0.39322230058450647
0.5085017515323529
0.9597980742524421
0.08034618164792517
0.9143712112937563
0.17242150180445381
0.8914706349104955
0.8480034205451665
0.8217034225251223
0.45552196009659873
0.3909280195122691
0.45119988941609357
0.02984583822414133
0.14404544949710196
0.45459370924953857
0.10296953351890004
0.4948127850493056
0.9238669854480596
0.9399144983422378
0.919211279645529
0.24084759450828674
0.4410486851096309
0.7699702465967465
0.27749525807367836
0.9449097003790671
0.5019309896062647
0.42774455164796255
0.43988066338230847
0.7405733579782761
0.2308870299365694
0.12306785713306911
0.7139426386075743
0.2640769424119722
0.031149630992576394
0.07700734539599274
0.37034537464573547
0.7034898163898959
0.8557141929947621
0.06539918397508715
以上就是networkx庫繪制帶權(quán)圖給無權(quán)圖加權(quán)重輸出的詳細(xì)內(nèi)容,更多關(guān)于networkx帶權(quán)圖無權(quán)圖輸出的資料請關(guān)注腳本之家其它相關(guān)文章!
相關(guān)文章
僅用500行Python代碼實(shí)現(xiàn)一個(gè)英文解析器的教程
這篇文章主要介紹了僅用500行Python代碼實(shí)現(xiàn)一個(gè)英文解析器的教程,自然語言處理近來也是業(yè)界中一個(gè)熱門課題,作者為NLP方向的開發(fā)者,需要的朋友可以參考下2015-04-04python3.8+django2+celery5.2.7環(huán)境準(zhǔn)備(python測試開發(fā)django)
這篇文章主要介紹了python測試開發(fā)django之python3.8+django2+celery5.2.7環(huán)境準(zhǔn)備工作,本文給大家介紹的非常詳細(xì),對大家的學(xué)習(xí)或工作具有一定的參考借鑒價(jià)值,需要的朋友可以參考下2022-07-07Pygame游戲開發(fā)之太空射擊實(shí)戰(zhàn)入門篇
相信大多數(shù)8090后都玩過太空射擊游戲,在過去游戲不多的年代太空射擊自然屬于經(jīng)典好玩的一款了,今天我們來自己動手實(shí)現(xiàn)它,在編寫學(xué)習(xí)中回顧過往展望未來,下面開始入門篇2022-08-08Python語法學(xué)習(xí)之進(jìn)程間的通信方式
進(jìn)程在創(chuàng)建之后是沒有辦法獲取返回值的,但有的時(shí)候兩個(gè)進(jìn)程之間需要進(jìn)行相互之間的配合才能完成工作,這就需要通信的幫助。本文主要介紹了Python中進(jìn)程間的通信方式,需要的可以了解一下2022-04-04TensorFlow通過文件名/文件夾名獲取標(biāo)簽,并加入隊(duì)列的實(shí)現(xiàn)
今天小編就為大家分享一篇TensorFlow通過文件名/文件夾名獲取標(biāo)簽,并加入隊(duì)列的實(shí)現(xiàn),具有很好的參考價(jià)值,希望對大家有所幫助。一起跟隨小編過來看看吧2020-02-02