一文了解mysql索引的數(shù)據(jù)結(jié)構(gòu)為什么要用B+樹
前提: 以下的一些數(shù)據(jù)結(jié)構(gòu)大家需提前知道,否則看起來會比較有困難,大家也可以按照本文所提到的知識點去主動查閱學(xué)習(xí)。
1. Hash表?No
因考慮到在數(shù)據(jù)檢索的過程中經(jīng)常會有范圍的查詢(如下),而hash表不能提供這種功能。
SELECT * FROM hero WHERE age>5 AND age<20;
使用哈希算法實現(xiàn)的索引雖然可以做到快速檢索數(shù)據(jù),但是沒辦法做數(shù)據(jù)高效范圍查找,因此哈希索引是不適合作為 Mysql 的底層索引的數(shù)據(jù)結(jié)構(gòu)。
2. 二叉查找樹(BST)?No
二叉查找樹(Binary Search Tree)雖然可以達到范圍搜索,但是在樹的插入過程中,如果插入的數(shù)據(jù)本來就是有順序的,那么就會形成一條鏈(如下),它的最壞情況是O(n)。
3. 紅黑樹?No
紅黑樹雖然看似達到了平衡狀態(tài),但是也會有極端情況存在,和上述BST樹一樣,雖然不會成為鏈狀,但是紅黑樹會存在右傾的現(xiàn)象。
在數(shù)據(jù)庫中的基本主鍵自增操作,主鍵一般都是數(shù)百萬數(shù)千萬的,如果紅黑樹存在這種問題,對于查找性能而言也是巨大的消耗,我們數(shù)據(jù)庫不可能忍受這種無意義的等待的。
4. 平衡二叉樹(AVL)?差那么二點意思
平衡二叉樹,英文翻譯為Balanced Binary Tree,為啥叫AVL呢? AVL 是大學(xué)教授G.M. Adelson-Velsky
和 E.M. Landis
名稱的縮寫,他們提出的平衡二叉樹的概念,為了紀(jì)念他們,將平衡二叉樹稱為 AVL樹。
AVL樹本質(zhì)上是一顆二叉查找樹,但是它又具有以下特點:
- 它是一棵空樹或它的左右兩個子樹的高度差的絕對值不超過1,
- 左右兩個子樹也都是一棵平衡二叉樹。
它不存在紅黑樹這種右傾的現(xiàn)象,也具備數(shù)據(jù)高效范圍查找的能力,但是數(shù)據(jù)庫查詢數(shù)據(jù)的瓶頸在于磁盤的IO,樹節(jié)點在磁盤空間中存儲可能是不連續(xù)的,假設(shè)我們一次IO讀取一個樹的節(jié)點,此次讀入內(nèi)存的這頁中沒有其他樹的節(jié)點,那么每讀取一個樹的節(jié)點,就要進行一次IO,這是多么消耗時間啊,所以我們設(shè)計數(shù)據(jù)庫索引時需要首先考慮怎么盡可能減少磁盤 IO 的次數(shù)。 磁盤讀取依靠的是機械運動,分為尋道時間、旋轉(zhuǎn)延遲、傳輸時間三個部分,這三個部分耗時相加就是一次磁盤IO的時間;這個花費的時間成本是內(nèi)存訪問的十幾萬倍左右。 正是由于磁盤IO是非常昂貴的操作,所以計算機操作系統(tǒng)對此做了優(yōu)化:預(yù)讀;每一次IO時,不僅僅把當(dāng)前磁盤地址的數(shù)據(jù)加載到內(nèi)存,同時也把相鄰數(shù)據(jù)也加載到內(nèi)存緩沖區(qū)中。因為局部預(yù)讀原理說明:當(dāng)訪問一個地址數(shù)據(jù)的時候,與其相鄰的數(shù)據(jù)很快也會被訪問到。每次磁盤IO讀取的數(shù)據(jù)我們稱之為一頁(page)。一頁的大小與操作系統(tǒng)有關(guān),一般為4k或者8k。這也就意味著讀取一頁內(nèi)數(shù)據(jù)的時候,實際上發(fā)生了一次磁盤IO。
相關(guān)術(shù)語解釋:
扇區(qū)(sector):
- 磁盤上的每個磁道被等分成多個弧段,這個弧段便稱作扇區(qū)(sector)。
扇區(qū)是磁盤物理層面的名稱
,它是實際發(fā)生讀寫的最底層。
磁盤塊(IO Block):
- 操作系統(tǒng)不與扇區(qū)直接進行交互,因為一般情況下一個扇區(qū)是512byte,如果1T去用512byte進行劃分,那劃分的地址空間太多了,為了讓操作系統(tǒng)能夠?qū)ぶ返礁蟮牡刂房臻g,操作系統(tǒng)將相鄰的扇區(qū)組合在一起,形成一個塊,對塊進行管理。每個磁盤塊可以包括 2、4、8、16、32 或 64 個扇區(qū),這便是磁盤塊(IO Block)。
磁盤塊是操作系統(tǒng)中出現(xiàn)的名稱
,文件系統(tǒng)讀寫數(shù)據(jù)的最小單位,它同時也被叫做磁盤簇。
頁(page):
頁是內(nèi)存中出現(xiàn)的名稱
,它是內(nèi)存的最小存儲單位,頁的大小通常為磁盤塊大小的 2^n 倍。
5. B-tree(B-樹也稱B樹)?差那么一點意思
B樹是一種平衡的多叉樹,B樹相比于平衡二叉樹(AVL),它能夠在單個節(jié)點中存儲大量鍵,也降低了樹的高度,從而減少了IO的次數(shù)。
B樹的節(jié)點中存儲的是數(shù)據(jù),單個節(jié)點存儲的內(nèi)容還是太少了,如何讓一個節(jié)點存儲的內(nèi)容更多呢?B+樹它來了。
6. B+樹
在節(jié)點中存儲某段數(shù)據(jù)的首地址,并且B+樹的葉子節(jié)點用了一個鏈表串聯(lián)起來,便于范圍查找。
B+樹高度降低,減少了磁盤 IO。其次,B+樹的葉子節(jié)點是真正數(shù)據(jù)存儲的地方,葉子節(jié)點用了鏈表連接起來,這個鏈表本身就是有序的,在數(shù)據(jù)范圍查找時,更具備效率。因此 Mysql 的索引用的就是 B+樹,B+樹在查找效率、范圍查找中都有著非常不錯的性能。
到此這篇關(guān)于一文了解mysql索引的數(shù)據(jù)結(jié)構(gòu)為什么用B+樹的文章就介紹到這了,更多相關(guān)mysql B+樹內(nèi)容請搜索腳本之家以前的文章或繼續(xù)瀏覽下面的相關(guān)文章希望大家以后多多支持腳本之家!
相關(guān)文章
MySQL進行g(shù)roup by字段返回大量異常結(jié)果的問題解決
本文主要介紹了MySQL進行g(shù)roup by字段返回大量異常結(jié)果的問題解決,文中通過代碼介紹的非常詳細,對大家的學(xué)習(xí)或者工作具有一定的參考學(xué)習(xí)價值,需要的朋友們下面隨著小編來一起學(xué)習(xí)學(xué)習(xí)吧2024-05-05docker下mysql 8.0.20 安裝配置方法圖文教程
這篇文章主要介紹了docker下mysql 8.0.20 安裝配置方法圖文教程,文中安裝步驟介紹的非常詳細,具有一定的參考價值,感興趣的小伙伴們可以參考一下2020-05-05Mysql ERROR 1067: Invalid default v
這篇文章主要介紹了Mysql ERROR 1067: Invalid default value for字段問題,具有很好的參考價值,希望對大家有所幫助。如有錯誤或未考慮完全的地方,望不吝賜教2023-05-05MySQL 8.0.18 Hash Join不支持left/right join左右連接問題
在MySQL 8.0.18中,增加了Hash Join新功能,它適用于未創(chuàng)建索引的字段,做等值關(guān)聯(lián)查詢。這篇文章給大家介紹MySQL 8.0.18 Hash Join不支持left/right join左右連接,感興趣的朋友一起看看吧2019-11-11