Python+OpenCV實現(xiàn)圖片中的圓形檢測
效果展示
中心的三個沒檢測到
import cv2 import numpy as np import matplotlib.pyplot as plt w = 20 h = 5 params = cv2.SimpleBlobDetector_Params() # Setup SimpleBlobDetector parameters. print('params') print(params) print(type(params)) # Filter by Area. params.filterByArea = True params.minArea = 10e1 params.maxArea = 10e3 params.minDistBetweenBlobs = 25 # params.filterByColor = True params.filterByConvexity = False # tweak these as you see fit # Filter by Circularity # params.filterByCircularity = False # params.minCircularity = 0.2 # params.blobColor = 0 # # # Filter by Convexity # params.filterByConvexity = True # params.minConvexity = 0.87 # Filter by Inertia # params.filterByInertia = True # params.filterByInertia = False # params.minInertiaRatio = 0.01 # img = cv2.imread("circles/circels.jpg",1) img = cv2.imread("circles/Snap_001.jpg",1) gray= cv2.cvtColor(img,cv2.COLOR_BGR2GRAY) # Detect blobs. # image = cv2.resize(gray_img, (int(img.shape[1]/4),int(img.shape[0]/4)), 1, 1, cv2.INTER_LINEAR) # image = cv2.resize(gray_img, dsize=None, fx=0.25, fy=0.25, interpolation=cv2.INTER_LINEAR) minThreshValue = 120 _, gray = cv2.threshold(gray, minThreshValue, 255, cv2.THRESH_BINARY) gray = cv2.resize(gray, dsize=None, fx=2, fy=2, interpolation=cv2.INTER_LINEAR) # plt.imshow(gray) # cv2.imshow("gray",gray) detector = cv2.SimpleBlobDetector_create(params) keypoints = detector.detect(gray) print(len(keypoints)) fig = plt.figure() # im_with_keypoints = cv2.drawKeypoints(gray, keypoints, np.array([]), (0, 0, 255), cv2.DRAW_MATCHES_FLAGS_DRAW_RICH_KEYPOINTS) im_with_keypoints = cv2.drawKeypoints(gray, keypoints, np.array([]), (0, 0, 255), cv2.DRAW_MATCHES_FLAGS_DRAW_RICH_KEYPOINTS) plt.imshow(cv2.cvtColor(im_with_keypoints, cv2.COLOR_BGR2RGB),interpolation='bicubic') fname = "key points" titlestr = '%s found %d keypoints' % (fname, len(keypoints)) plt.title(titlestr) plt.show() # cv2.imshow("graykey",gray) # cv2.waitKey() fig.canvas.set_window_title(titlestr) ret, corners = cv2.findCirclesGrid(gray, (w, h), flags=(cv2.CALIB_CB_SYMMETRIC_GRID + cv2.CALIB_CB_CLUSTERING ), blobDetector=detector ) if corners is not None: cv2.drawChessboardCorners(img, (w, h), corners, corners is not None) print("find blob") # # cv2.imshow('findCorners', img) # cv2.waitKey() plt.imshow(img) plt.show()
以上就是Python+OpenCV實現(xiàn)圖片中的圓形檢測的詳細內(nèi)容,更多關(guān)于Python OpenCV圓形檢測的資料請關(guān)注腳本之家其它相關(guān)文章!
相關(guān)文章
Python實現(xiàn)的基數(shù)排序算法原理與用法實例分析
這篇文章主要介紹了Python實現(xiàn)的基數(shù)排序算法,簡單說明了基數(shù)排序的原理并結(jié)合實例形式分析了Python實現(xiàn)與使用基數(shù)排序的具體操作技巧,需要的朋友可以參考下2017-11-11python使用pyecharts庫畫地圖數(shù)據(jù)可視化的實現(xiàn)
這篇文章主要介紹了python使用pyecharts庫畫地圖數(shù)據(jù)可視化的實現(xiàn),文中通過示例代碼介紹的非常詳細,對大家的學習或者工作具有一定的參考學習價值,需要的朋友們下面隨著小編來一起學習學習吧2020-03-03創(chuàng)建SparkSession和sparkSQL的詳細過程
SparkSession 是 Spark SQL 的入口,Builder 是 SparkSession 的構(gòu)造器。 通過 Builder, 可以添加各種配置,并通過 stop 函數(shù)來停止 SparkSession,本文給大家分享創(chuàng)建SparkSession和sparkSQL的詳細過程,一起看看吧2021-08-08Django重裝mysql后啟動報錯:No module named ‘MySQLdb’的解決方法
這篇文章主要給大家介紹了關(guān)于Django重裝mysql后啟動報錯:No module named ‘MySQLdb’的解決方法,分享出來,對同樣遇到這個問題的朋友們一個參考學習,需要的朋友們下面隨著小編來一起學習學習吧。2018-04-04詳解Python Celery和RabbitMQ實戰(zhàn)教程
這篇文章主要介紹了詳解Python Celery和RabbitMQ實戰(zhàn)教程,文中通過示例代碼介紹的非常詳細,對大家的學習或者工作具有一定的參考學習價值,需要的朋友們下面隨著小編來一起學習學習吧2021-01-01Pandas數(shù)據(jù)清洗和預處理的實現(xiàn)示例
本文主要介紹了Pandas數(shù)據(jù)清洗和預處理的實現(xiàn)示例,包括處理缺失值、異常值,進行數(shù)據(jù)轉(zhuǎn)換和規(guī)范化,以及處理重復數(shù)據(jù)等操作,感興趣的可以了解一下2024-01-01