nlp計數(shù)法應(yīng)用于PTB數(shù)據(jù)集示例詳解
PTB數(shù)據(jù)集
內(nèi)容如下:
一行保存一個句子;將稀有單詞替換成特殊字符 < unk > ;將具體的數(shù)字替換 成“N”
we 're talking about years ago before anyone heard of asbestos having any questionable properties there is no asbestos in our products now neither <unk> nor the researchers who studied the workers were aware of any research on smokers of the kent cigarettes we have no useful information on whether users are at risk said james a. <unk> of boston 's <unk> cancer institute dr. <unk> led a team of researchers from the national cancer institute and the medical schools of harvard university and boston university
ptb.py
使用PTB數(shù)據(jù)集:
由下面這句話,可知用PTB數(shù)據(jù)集時候,是把所有句子首尾連接了。
words = open(file_path).read().replace('\n', '<eos>').strip().split()
ptb.py起到了下載PTB數(shù)據(jù)集,把數(shù)據(jù)集存到文件夾某個位置,然后對數(shù)據(jù)集進(jìn)行提取的功能,提取出corpus, word_to_id, id_to_word。
import sys import os sys.path.append('..') try: import urllib.request except ImportError: raise ImportError('Use Python3!') import pickle import numpy as np url_base = 'https://raw.githubusercontent.com/tomsercu/lstm/master/data/' key_file = { 'train':'ptb.train.txt', 'test':'ptb.test.txt', 'valid':'ptb.valid.txt' } save_file = { 'train':'ptb.train.npy', 'test':'ptb.test.npy', 'valid':'ptb.valid.npy' } vocab_file = 'ptb.vocab.pkl' dataset_dir = os.path.dirname(os.path.abspath(__file__)) def _download(file_name): file_path = dataset_dir + '/' + file_name if os.path.exists(file_path): return print('Downloading ' + file_name + ' ... ') try: urllib.request.urlretrieve(url_base + file_name, file_path) except urllib.error.URLError: import ssl ssl._create_default_https_context = ssl._create_unverified_context urllib.request.urlretrieve(url_base + file_name, file_path) print('Done') def load_vocab(): vocab_path = dataset_dir + '/' + vocab_file if os.path.exists(vocab_path): with open(vocab_path, 'rb') as f: word_to_id, id_to_word = pickle.load(f) return word_to_id, id_to_word word_to_id = {} id_to_word = {} data_type = 'train' file_name = key_file[data_type] file_path = dataset_dir + '/' + file_name _download(file_name) words = open(file_path).read().replace('\n', '<eos>').strip().split() for i, word in enumerate(words): if word not in word_to_id: tmp_id = len(word_to_id) word_to_id[word] = tmp_id id_to_word[tmp_id] = word with open(vocab_path, 'wb') as f: pickle.dump((word_to_id, id_to_word), f) return word_to_id, id_to_word def load_data(data_type='train'): ''' :param data_type: 數(shù)據(jù)的種類:'train' or 'test' or 'valid (val)' :return: ''' if data_type == 'val': data_type = 'valid' save_path = dataset_dir + '/' + save_file[data_type] word_to_id, id_to_word = load_vocab() if os.path.exists(save_path): corpus = np.load(save_path) return corpus, word_to_id, id_to_word file_name = key_file[data_type] file_path = dataset_dir + '/' + file_name _download(file_name) words = open(file_path).read().replace('\n', '<eos>').strip().split() corpus = np.array([word_to_id[w] for w in words]) np.save(save_path, corpus) return corpus, word_to_id, id_to_word if __name__ == '__main__': for data_type in ('train', 'val', 'test'): load_data(data_type)
使用ptb.py
corpus保存了單詞ID列表,id_to_word 是將單詞ID轉(zhuǎn)化為單詞的字典,word_to_id 是將單詞轉(zhuǎn)化為單詞ID的字典。
使用ptb.load_data()加載數(shù)據(jù)。里面的參數(shù) ‘train’、‘test’、‘valid’ 分別對應(yīng)訓(xùn)練用數(shù)據(jù)、測試用數(shù)據(jù)、驗證用數(shù)據(jù)。
import sys sys.path.append('..') from dataset import ptb corpus, word_to_id, id_to_word = ptb.load_data('train') print('corpus size:', len(corpus)) print('corpus[:30]:', corpus[:30]) print() print('id_to_word[0]:', id_to_word[0]) print('id_to_word[1]:', id_to_word[1]) print('id_to_word[2]:', id_to_word[2]) print() print("word_to_id['car']:", word_to_id['car']) print("word_to_id['happy']:", word_to_id['happy']) print("word_to_id['lexus']:", word_to_id['lexus'])
結(jié)果:
corpus size: 929589 corpus[:30]: [ 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29] id_to_word[0]: aer id_to_word[1]: banknote id_to_word[2]: berlitz word_to_id['car']: 3856 word_to_id['happy']: 4428 word_to_id['lexus']: 7426 Process finished with exit code 0
計數(shù)方法應(yīng)用于PTB數(shù)據(jù)集
其實和不用PTB數(shù)據(jù)集的區(qū)別就在于這句話。
corpus, word_to_id, id_to_word = ptb.load_data('train')
下面這句話起降維的效果
word_vecs = U[:, :wordvec_size]
整個代碼其實耗時最大的是在下面這個函數(shù)上:
W = ppmi(C, verbose=True)
完整代碼:
import sys sys.path.append('..') import numpy as np from common.util import most_similar, create_co_matrix, ppmi from dataset import ptb window_size = 2 wordvec_size = 100 corpus, word_to_id, id_to_word = ptb.load_data('train') vocab_size = len(word_to_id) print('counting co-occurrence ...') C = create_co_matrix(corpus, vocab_size, window_size) print('calculating PPMI ...') W = ppmi(C, verbose=True) print('calculating SVD ...') #try: # truncated SVD (fast!) print("ok") from sklearn.utils.extmath import randomized_svd U, S, V = randomized_svd(W, n_components=wordvec_size, n_iter=5, random_state=None) #except ImportError: # SVD (slow) # U, S, V = np.linalg.svd(W) word_vecs = U[:, :wordvec_size] querys = ['you', 'year', 'car', 'toyota'] for query in querys: most_similar(query, word_to_id, id_to_word, word_vecs, top=5)
下面這個是用普通的np.linalg.svd(W)做出的結(jié)果。
[query] you i: 0.7016294002532959 we: 0.6388039588928223 anybody: 0.5868048667907715 do: 0.5612815618515015 'll: 0.512611985206604 [query] year month: 0.6957005262374878 quarter: 0.691483736038208 earlier: 0.6661213636398315 last: 0.6327787041664124 third: 0.6230476498603821 [query] car luxury: 0.6767407655715942 auto: 0.6339930295944214 vehicle: 0.5972712635993958 cars: 0.5888376235961914 truck: 0.5693157315254211 [query] toyota motor: 0.7481387853622437 nissan: 0.7147319316864014 motors: 0.6946366429328918 lexus: 0.6553674340248108 honda: 0.6343469619750977
下面結(jié)果,是用了sklearn模塊里面的randomized_svd方法,使用了隨機數(shù)的 Truncated SVD,僅對奇異值較大的部分進(jìn)行計算,計算速度比常規(guī)的 SVD 快。
calculating SVD ... ok [query] you i: 0.6678948998451233 we: 0.6213737726211548 something: 0.560122013092041 do: 0.5594725608825684 someone: 0.5490139126777649 [query] year month: 0.6444296836853027 quarter: 0.6192560791969299 next: 0.6152222156524658 fiscal: 0.5712860226631165 earlier: 0.5641934871673584 [query] car luxury: 0.6612467765808105 auto: 0.6166062355041504 corsica: 0.5270425081253052 cars: 0.5142025947570801 truck: 0.5030257105827332 [query] toyota motor: 0.7747215628623962 motors: 0.6871038675308228 lexus: 0.6786072850227356 nissan: 0.6618651151657104 mazda: 0.6237337589263916 Process finished with exit code 0
以上就是nlp計數(shù)法應(yīng)用于PTB數(shù)據(jù)集示例詳解的詳細(xì)內(nèi)容,更多關(guān)于nlp計數(shù)法應(yīng)用于PTB數(shù)據(jù)集的資料請關(guān)注腳本之家其它相關(guān)文章!
相關(guān)文章
Django后端發(fā)送小程序微信模板消息示例(服務(wù)通知)
今天小編就為大家分享一篇Django后端發(fā)送小程序微信模板消息示例(服務(wù)通知),具有很好的參考價值,希望對大家有所幫助。一起跟隨小編過來看看吧2019-12-12在Windows系統(tǒng)上搭建Nginx+Python+MySQL環(huán)境的教程
這篇文章主要介紹了在Windows系統(tǒng)上搭建Nginx+Python+MySQL環(huán)境的教程,文中使用flup中間件及FastCGI方式連接,需要的朋友可以參考下2015-12-12如何將numpy二維數(shù)組中的np.nan值替換為指定的值
這篇文章主要介紹了將numpy二維數(shù)組中的np.nan值替換為指定的值操作,具有很好的參考價值,希望對大家有所幫助。如有錯誤或未考慮完全的地方,望不吝賜教2021-05-05將Pytorch模型從CPU轉(zhuǎn)換成GPU的實現(xiàn)方法
今天小編就為大家分享一篇將Pytorch模型從CPU轉(zhuǎn)換成GPU的實現(xiàn)方法,具有很好的參考價值,希望對大家有所幫助。一起跟隨小編過來看看吧2019-08-08跟老齊學(xué)Python之?dāng)?shù)據(jù)類型總結(jié)
前面已經(jīng)洋洋灑灑地介紹了不少數(shù)據(jù)類型。不能再不顧一切地向前沖了,應(yīng)當(dāng)總結(jié)一下。這樣讓看官能夠從總體上對這些數(shù)據(jù)類型有所了解,如果能夠有一覽眾山小的感覺,就太好了。2014-09-09