詳解Python prometheus_client使用方式
背景說(shuō)明
服務(wù)部署在阿里云的K8s上,配置了基于Prometheus的Grafana監(jiān)控。原本用的是自定義的Metrics接口統(tǒng)計(jì),上報(bào)一些字段,后面發(fā)現(xiàn)Prometheus自帶的監(jiān)控非常全面好用,適合直接抓取統(tǒng)計(jì),所以做了一些改變。
Python prometheus-client 安裝
pip install prometheus-client
Python封裝
# encoding: utf-8 from prometheus_client import Counter, Gauge, Summary from prometheus_client.core import CollectorRegistry from prometheus_client.exposition import choose_encoder class Monitor: def __init__(self): # 注冊(cè)收集器&最大耗時(shí)map self.collector_registry = CollectorRegistry(auto_describe=False) self.request_time_max_map = {} # 接口調(diào)用summary統(tǒng)計(jì) self.http_request_summary = Summary(name="http_server_requests_seconds", documentation="Num of request time summary", labelnames=("method", "code", "uri"), registry=self.collector_registry) # 接口最大耗時(shí)統(tǒng)計(jì) self.http_request_max_cost = Gauge(name="http_server_requests_seconds_max", documentation="Number of request max cost", labelnames=("method", "code", "uri"), registry=self.collector_registry) # 請(qǐng)求失敗次數(shù)統(tǒng)計(jì) self.http_request_fail_count = Counter(name="http_server_requests_error", documentation="Times of request fail in total", labelnames=("method", "code", "uri"), registry=self.collector_registry) # 模型預(yù)測(cè)耗時(shí)統(tǒng)計(jì) self.http_request_predict_cost = Counter(name="http_server_requests_seconds_predict", documentation="Seconds of prediction cost in total", labelnames=("method", "code", "uri"), registry=self.collector_registry) # 圖片下載耗時(shí)統(tǒng)計(jì) self.http_request_download_cost = Counter(name="http_server_requests_seconds_download", documentation="Seconds of download cost in total", labelnames=("method", "code", "uri"), registry=self.collector_registry) # 獲取/metrics結(jié)果 def get_prometheus_metrics_info(self, handler): encoder, content_type = choose_encoder(handler.request.headers.get('accept')) handler.set_header("Content-Type", content_type) handler.write(encoder(self.collector_registry)) self.reset_request_time_max_map() # summary統(tǒng)計(jì) def set_prometheus_request_summary(self, handler): self.http_request_summary.labels(handler.request.method, handler.get_status(), handler.request.path).observe(handler.request.request_time()) self.set_prometheus_request_max_cost(handler) # 自定義summary統(tǒng)計(jì) def set_prometheus_request_summary_customize(self, method, status, path, cost_time): self.http_request_summary.labels(method, status, path).observe(cost_time) self.set_prometheus_request_max_cost_customize(method, status, path, cost_time) # 失敗統(tǒng)計(jì) def set_prometheus_request_fail_count(self, handler, amount=1.0): self.http_request_fail_count.labels(handler.request.method, handler.get_status(), handler.request.path).inc(amount) # 自定義失敗統(tǒng)計(jì) def set_prometheus_request_fail_count_customize(self, method, status, path, amount=1.0): self.http_request_fail_count.labels(method, status, path).inc(amount) # 最大耗時(shí)統(tǒng)計(jì) def set_prometheus_request_max_cost(self, handler): requset_cost = handler.request.request_time() if self.check_request_time_max_map(handler.request.path, requset_cost): self.http_request_max_cost.labels(handler.request.method, handler.get_status(), handler.request.path).set(requset_cost) self.request_time_max_map[handler.request.path] = requset_cost # 自定義最大耗時(shí)統(tǒng)計(jì) def set_prometheus_request_max_cost_customize(self, method, status, path, cost_time): if self.check_request_time_max_map(path, cost_time): self.http_request_max_cost.labels(method, status, path).set(cost_time) self.request_time_max_map[path] = cost_time # 預(yù)測(cè)耗時(shí)統(tǒng)計(jì) def set_prometheus_request_predict_cost(self, handler, amount=1.0): self.http_request_predict_cost.labels(handler.request.method, handler.get_status(), handler.request.path).inc(amount) # 自定義預(yù)測(cè)耗時(shí)統(tǒng)計(jì) def set_prometheus_request_predict_cost_customize(self, method, status, path, cost_time): self.http_request_predict_cost.labels(method, status, path).inc(cost_time) # 下載耗時(shí)統(tǒng)計(jì) def set_prometheus_request_download_cost(self, handler, amount=1.0): self.http_request_download_cost.labels(handler.request.method, handler.get_status(), handler.request.path).inc(amount) # 自定義下載耗時(shí)統(tǒng)計(jì) def set_prometheus_request_download_cost_customize(self, method, status, path, cost_time): self.http_request_download_cost.labels(method, status, path).inc(cost_time) # 校驗(yàn)是否賦值最大耗時(shí)map def check_request_time_max_map(self, uri, cost): if uri not in self.request_time_max_map: return True if self.request_time_max_map[uri] < cost: return True return False # 重置最大耗時(shí)map def reset_request_time_max_map(self): for key in self.request_time_max_map: self.request_time_max_map[key] = 0.0
調(diào)用
import tornado import tornado.ioloop import tornado.web import tornado.gen from datetime import datetime from tools.monitor import Monitor global g_monitor class ClassifierHandler(tornado.web.RequestHandler): def post(self): # TODO Something you need # work.... # 統(tǒng)計(jì)Summary,包括請(qǐng)求次數(shù)和每次耗時(shí) g_monitor.set_prometheus_request_summary(self) self.write("OK") class PingHandler(tornado.web.RequestHandler): def head(self): print('INFO', datetime.now(), "/ping Head.") g_monitor.set_prometheus_request_summary(self) self.write("OK") def get(self): print('INFO', datetime.now(), "/ping Get.") g_monitor.set_prometheus_request_summary(self) self.write("OK") class MetricsHandler(tornado.web.RequestHandler): def get(self): print('INFO', datetime.now(), "/metrics Get.") g_monitor.set_prometheus_request_summary(self) # 通過(guò)Metrics接口返回統(tǒng)計(jì)結(jié)果 g_monitor.get_prometheus_metrics_info(self) def make_app(): return tornado.web.Application([ (r"/ping?", PingHandler), (r"/metrics?", MetricsHandler), (r"/work?", ClassifierHandler) ]) if __name__ == "__main__": g_monitor = Monitor() app = make_app() app.listen(port) tornado.ioloop.IOLoop.current().start()
Metrics返回結(jié)果實(shí)例
到此這篇關(guān)于詳解Python prometheus_client使用方式的文章就介紹到這了,更多相關(guān)Python prometheus_client內(nèi)容請(qǐng)搜索腳本之家以前的文章或繼續(xù)瀏覽下面的相關(guān)文章希望大家以后多多支持腳本之家!
相關(guān)文章
關(guān)于Python 3中print函數(shù)的換行詳解
最近在學(xué)習(xí)python3,發(fā)現(xiàn)了一個(gè)問(wèn)題想著總結(jié)出來(lái),所以下面這篇文章主要給大家介紹了關(guān)于Python 3中print函數(shù)換行的相關(guān)資料,文中通過(guò)示例代碼介紹的非常詳細(xì),對(duì)需要的朋友們具有一定的參考學(xué)習(xí)價(jià)值,感興趣的朋友們下面隨著小編來(lái)一起學(xué)習(xí)學(xué)習(xí)吧。2017-08-08python實(shí)現(xiàn)基于SVM手寫(xiě)數(shù)字識(shí)別功能
這篇文章主要為大家詳細(xì)介紹了python實(shí)現(xiàn)基于SVM手寫(xiě)數(shù)字識(shí)別功能,文中示例代碼介紹的非常詳細(xì),具有一定的參考價(jià)值,感興趣的小伙伴們可以參考一下2018-01-01Python Opencv中基礎(chǔ)的知識(shí)點(diǎn)
這篇文章主要介紹了Python Opencv中基礎(chǔ)的知識(shí)點(diǎn),主要包括創(chuàng)建窗口、保存圖片、采集視頻、鼠標(biāo)控制的代碼,代碼簡(jiǎn)單易懂,對(duì)大家的學(xué)習(xí)或工作具有一定的參考借鑒價(jià)值,需要的朋友可以參考下2022-07-07五個(gè)Jupyter?Notebook實(shí)用魔法命令分享
Jupyter?Notebook是一個(gè)開(kāi)源的交互式編程環(huán)境,用于創(chuàng)建和共享包含實(shí)時(shí)代碼、文本等,本文主要來(lái)和大家分享一些有趣的Jupyter?Notebook魔法命令,需要的可以參考一下2023-07-07Python2和3字符編碼的區(qū)別知識(shí)點(diǎn)整理
在本篇文章中小編給各位分享的是關(guān)于Python2和3字符編碼的區(qū)別知識(shí)點(diǎn),有需要的朋友們可以學(xué)習(xí)下。2019-08-08python破解WiFi教程代碼,Python蹭網(wǎng)原理講解
用Python生成一個(gè)簡(jiǎn)單的密碼本,一般是有數(shù)字、字母和符號(hào)組成,這里用到的思路主要是窮舉法。通過(guò)使用pywifi?模塊,根據(jù)密碼本暴力破解WiFi。本文只是從技術(shù)的角度來(lái)闡述學(xué)習(xí)Pywifi庫(kù)!并不建議大家做任何破壞性的操作和任何不當(dāng)?shù)男袨椋?/div> 2023-01-01scrapy處理python爬蟲(chóng)調(diào)度詳解
在本篇文章里小編給大家整理的是一篇關(guān)于scrapy處理python爬蟲(chóng)調(diào)度的相關(guān)內(nèi)容,有興趣的朋友們學(xué)習(xí)下。2020-11-11最新評(píng)論