python PyGame五子棋小游戲
前言
PyGame 是一個(gè)專門設(shè)計(jì)來進(jìn)行游戲開發(fā)設(shè)計(jì)的 Python 模塊,允許實(shí)時(shí)電子游戲研發(fā)而無需被低級(jí)語言(如機(jī)器語言和匯編語言)束縛,使用起來非常的簡(jiǎn)單,非常適合新手拿來玩耍,本教程源碼均基于 Python 3.x 版本。
五子棋小游戲
1、簡(jiǎn)介
五子棋是我們小時(shí)候經(jīng)常玩的兩人對(duì)弈策略小游戲,規(guī)則簡(jiǎn)單:
1、對(duì)局雙方各執(zhí)一色棋子,常為黑白兩色;2、空棋盤開局;3、黑先、白后,交替下子,每次只能下一子;4、棋子下在棋盤的空白點(diǎn)上,棋子下定后,不得向其它點(diǎn)移動(dòng),不得從棋盤上拿掉或拿起另落別處;5、黑方的第一枚棋子可下在棋盤任意交叉點(diǎn)上;6、輪流下子是雙方的權(quán)利,但允許任何一方放棄下子權(quán),先形成5子連線者獲勝;
五子棋容易上手,規(guī)則簡(jiǎn)單,老少皆宜,而且趣味橫生,引人入勝。它不僅能增強(qiáng)思維能力,提高智力,而且富含哲理,有助于修身養(yǎng)性。
2、環(huán)境準(zhǔn)備
本次教程需要提前安裝好 Python 3.x 環(huán)境以及 PyGame 模塊,Python 環(huán)境建議安裝 Anaconda 以及 Jupyter,對(duì)于新手比較友好!
pip install jupyter pip install pygame
安裝好 PyGame 模塊之后,咱們就可以正式開寫了!
3、初始化環(huán)境
首先需要引入以下模塊:
import sys import random import pygame from pygame.locals import * import pygame.gfxdraw from collections import namedtuple
接著我們初始化棋盤的一些變量,便于下面寫代碼:
Chessman = namedtuple('Chessman', 'Name Value Color') Point = namedtuple('Point', 'X Y') BLACK_CHESSMAN = Chessman('黑子', 1, (45, 45, 45)) WHITE_CHESSMAN = Chessman('白子', 2, (219, 219, 219)) offset = [(1, 0), (0, 1), (1, 1), (1, -1)] SIZE = 30 # 棋盤每個(gè)點(diǎn)時(shí)間的間隔 Line_Points = 19 # 棋盤每行/每列點(diǎn)數(shù) Outer_Width = 20 # 棋盤外寬度 Border_Width = 4 # 邊框?qū)挾? Inside_Width = 4 # 邊框跟實(shí)際的棋盤之間的間隔 Border_Length = SIZE * (Line_Points - 1) + Inside_Width * 2 + Border_Width # 邊框線的長(zhǎng)度 Start_X = Start_Y = Outer_Width + int(Border_Width / 2) + Inside_Width # 網(wǎng)格線起點(diǎn)(左上角)坐標(biāo) SCREEN_HEIGHT = SIZE * (Line_Points - 1) + Outer_Width * 2 + Border_Width + Inside_Width * 2 # 游戲屏幕的高 SCREEN_WIDTH = SCREEN_HEIGHT + 200 # 游戲屏幕的寬 Stone_Radius = SIZE // 2 - 3 # 棋子半徑 Stone_Radius2 = SIZE // 2 + 3 Checkerboard_Color = (0xE3, 0x92, 0x65) # 棋盤顏色 BLACK_COLOR = (0, 0, 0) WHITE_COLOR = (255, 255, 255) RED_COLOR = (200, 30, 30) BLUE_COLOR = (30, 30, 200) RIGHT_INFO_POS_X = SCREEN_HEIGHT + Stone_Radius2 * 2 + 10
4、棋盤
通過上述變量畫出棋盤,主要源碼如下:
# 畫棋盤 def _draw_checkerboard(screen): # 填充棋盤背景色 screen.fill(Checkerboard_Color) # 畫棋盤網(wǎng)格線外的邊框 pygame.draw.rect(screen, BLACK_COLOR, (Outer_Width, Outer_Width, Border_Length, Border_Length), Border_Width) # 畫網(wǎng)格線 for i in range(Line_Points): pygame.draw.line(screen, BLACK_COLOR, (Start_Y, Start_Y + SIZE * i), (Start_Y + SIZE * (Line_Points - 1), Start_Y + SIZE * i), 1) for j in range(Line_Points): pygame.draw.line(screen, BLACK_COLOR, (Start_X + SIZE * j, Start_X), (Start_X + SIZE * j, Start_X + SIZE * (Line_Points - 1)), 1) # 畫星位和天元 for i in (3, 9, 15): for j in (3, 9, 15): if i == j == 9: radius = 5 else: radius = 3 # pygame.draw.circle(screen, BLACK, (Start_X + SIZE * i, Start_Y + SIZE * j), radius) pygame.gfxdraw.aacircle(screen, Start_X + SIZE * i, Start_Y + SIZE * j, radius, BLACK_COLOR) pygame.gfxdraw.filled_circle(screen, Start_X + SIZE * i, Start_Y + SIZE * j, radius, BLACK_COLOR)
5、黑白棋子
有了棋盤當(dāng)然少不了黑白棋子,比較簡(jiǎn)單:
# 畫棋子 def _draw_chessman(screen, point, stone_color): # pygame.draw.circle(screen, stone_color, (Start_X + SIZE * point.X, Start_Y + SIZE * point.Y), Stone_Radius) pygame.gfxdraw.aacircle(screen, Start_X + SIZE * point.X, Start_Y + SIZE * point.Y, Stone_Radius, stone_color) pygame.gfxdraw.filled_circle(screen, Start_X + SIZE * point.X, Start_Y + SIZE * point.Y, Stone_Radius, stone_color)
6、對(duì)局信息
每一局游戲不可缺少的就是雙方玩家的對(duì)局信息,主要展示雙方的黑白執(zhí)子以及戰(zhàn)況,關(guān)鍵源碼如下:
# 畫左側(cè)信息顯示 def _draw_left_info(screen, font, cur_runner, black_win_count, white_win_count): _draw_chessman_pos(screen, (SCREEN_HEIGHT + Stone_Radius2, Start_X + Stone_Radius2), BLACK_CHESSMAN.Color) _draw_chessman_pos(screen, (SCREEN_HEIGHT + Stone_Radius2, Start_X + Stone_Radius2 * 4), WHITE_CHESSMAN.Color) print_text(screen, font, RIGHT_INFO_POS_X, Start_X + 3, '玩家', BLUE_COLOR) print_text(screen, font, RIGHT_INFO_POS_X, Start_X + Stone_Radius2 * 3 + 3, '電腦', BLUE_COLOR) print_text(screen, font, SCREEN_HEIGHT, SCREEN_HEIGHT - Stone_Radius2 * 8, '戰(zhàn)況:', BLUE_COLOR) _draw_chessman_pos(screen, (SCREEN_HEIGHT + Stone_Radius2, SCREEN_HEIGHT - int(Stone_Radius2 * 4.5)), BLACK_CHESSMAN.Color) _draw_chessman_pos(screen, (SCREEN_HEIGHT + Stone_Radius2, SCREEN_HEIGHT - Stone_Radius2 * 2), WHITE_CHESSMAN.Color) print_text(screen, font, RIGHT_INFO_POS_X, SCREEN_HEIGHT - int(Stone_Radius2 * 5.5) + 3, f'{black_win_count} 勝', BLUE_COLOR) print_text(screen, font, RIGHT_INFO_POS_X, SCREEN_HEIGHT - Stone_Radius2 * 3 + 3, f'{white_win_count} 勝', BLUE_COLOR) def _draw_chessman_pos(screen, pos, stone_color): pygame.gfxdraw.aacircle(screen, pos[0], pos[1], Stone_Radius2, stone_color) pygame.gfxdraw.filled_circle(screen, pos[0], pos[1], Stone_Radius2, stone_color)
畫出來的整體效果如下:
至此,整個(gè)棋盤的布局就完成了!
7、AI
由于咱們的小游戲不可以聯(lián)機(jī),因此大部分時(shí)間應(yīng)該都是人機(jī)對(duì)下,這樣就需要引入 AI 人機(jī),讓電腦作為對(duì)手陪我們下棋,主要源碼如下:
class AI: def __init__(self, line_points, chessman): self._line_points = line_points self._my = chessman self._opponent = BLACK_CHESSMAN if chessman == WHITE_CHESSMAN else WHITE_CHESSMAN self._checkerboard = [[0] * line_points for _ in range(line_points)] def get_opponent_drop(self, point): self._checkerboard[point.Y][point.X] = self._opponent.Value def AI_drop(self): point = None score = 0 for i in range(self._line_points): for j in range(self._line_points): if self._checkerboard[j][i] == 0: _score = self._get_point_score(Point(i, j)) if _score > score: score = _score point = Point(i, j) elif _score == score and _score > 0: r = random.randint(0, 100) if r % 2 == 0: point = Point(i, j) self._checkerboard[point.Y][point.X] = self._my.Value return point def _get_point_score(self, point): score = 0 for os in offset: score += self._get_direction_score(point, os[0], os[1]) return score def _get_direction_score(self, point, x_offset, y_offset): count = 0 # 落子處我方連續(xù)子數(shù) _count = 0 # 落子處對(duì)方連續(xù)子數(shù) space = None # 我方連續(xù)子中有無空格 _space = None # 對(duì)方連續(xù)子中有無空格 both = 0 # 我方連續(xù)子兩端有無阻擋 _both = 0 # 對(duì)方連續(xù)子兩端有無阻擋 # 如果是 1 表示是邊上是我方子,2 表示敵方子 flag = self._get_stone_color(point, x_offset, y_offset, True) if flag != 0: for step in range(1, 6): x = point.X + step * x_offset y = point.Y + step * y_offset if 0 <= x < self._line_points and 0 <= y < self._line_points: if flag == 1: if self._checkerboard[y][x] == self._my.Value: count += 1 if space is False: space = True elif self._checkerboard[y][x] == self._opponent.Value: _both += 1 break else: if space is None: space = False else: break # 遇到第二個(gè)空格退出 elif flag == 2: if self._checkerboard[y][x] == self._my.Value: _both += 1 break elif self._checkerboard[y][x] == self._opponent.Value: _count += 1 if _space is False: _space = True else: if _space is None: _space = False else: break else: # 遇到邊也就是阻擋 if flag == 1: both += 1 elif flag == 2: _both += 1 if space is False: space = None if _space is False: _space = None _flag = self._get_stone_color(point, -x_offset, -y_offset, True) if _flag != 0: for step in range(1, 6): x = point.X - step * x_offset y = point.Y - step * y_offset if 0 <= x < self._line_points and 0 <= y < self._line_points: if _flag == 1: if self._checkerboard[y][x] == self._my.Value: count += 1 if space is False: space = True elif self._checkerboard[y][x] == self._opponent.Value: _both += 1 break else: if space is None: space = False else: break # 遇到第二個(gè)空格退出 elif _flag == 2: if self._checkerboard[y][x] == self._my.Value: _both += 1 break elif self._checkerboard[y][x] == self._opponent.Value: _count += 1 if _space is False: _space = True else: if _space is None: _space = False else: break else: # 遇到邊也就是阻擋 if _flag == 1: both += 1 elif _flag == 2: _both += 1 score = 0 if count == 4: score = 10000 elif _count == 4: score = 9000 elif count == 3: if both == 0: score = 1000 elif both == 1: score = 100 else: score = 0 elif _count == 3: if _both == 0: score = 900 elif _both == 1: score = 90 else: score = 0 elif count == 2: if both == 0: score = 100 elif both == 1: score = 10 else: score = 0 elif _count == 2: if _both == 0: score = 90 elif _both == 1: score = 9 else: score = 0 elif count == 1: score = 10 elif _count == 1: score = 9 else: score = 0 if space or _space: score /= 2 return score # 判斷指定位置處在指定方向上是我方子、對(duì)方子、空 def _get_stone_color(self, point, x_offset, y_offset, next): x = point.X + x_offset y = point.Y + y_offset if 0 <= x < self._line_points and 0 <= y < self._line_points: if self._checkerboard[y][x] == self._my.Value: return 1 elif self._checkerboard[y][x] == self._opponent.Value: return 2 else: if next: return self._get_stone_color(Point(x, y), x_offset, y_offset, False) else: return 0 else: return 0
8、完善
最后就是對(duì)規(guī)則的一些完善,比如落子,判斷輸贏以及勝利界面之類的編寫,關(guān)鍵源碼如下:
class Checkerboard: def __init__(self, line_points): self._line_points = line_points self._checkerboard = [[0] * line_points for _ in range(line_points)] def _get_checkerboard(self): return self._checkerboard checkerboard = property(_get_checkerboard) # 判斷是否可落子 def can_drop(self, point): return self._checkerboard[point.Y][point.X] == 0 def drop(self, chessman, point): """ 落子 :param chessman: :param point:落子位置 :return:若該子落下之后即可獲勝,則返回獲勝方,否則返回 None """ print(f'{chessman.Name} ({point.X}, {point.Y})') self._checkerboard[point.Y][point.X] = chessman.Value if self._win(point): print(f'{chessman.Name}獲勝') return chessman # 判斷是否贏了 def _win(self, point): cur_value = self._checkerboard[point.Y][point.X] for os in offset: if self._get_count_on_direction(point, cur_value, os[0], os[1]): return True def _get_count_on_direction(self, point, value, x_offset, y_offset): count = 1 for step in range(1, 5): x = point.X + step * x_offset y = point.Y + step * y_offset if 0 <= x < self._line_points and 0 <= y < self._line_points and self._checkerboard[y][x] == value: count += 1 else: break for step in range(1, 5): x = point.X - step * x_offset y = point.Y - step * y_offset if 0 <= x < self._line_points and 0 <= y < self._line_points and self._checkerboard[y][x] == value: count += 1 else: break return count >= 5
至此,整個(gè)游戲就已經(jīng)制作完成,下面我們可以試玩一下:
說來慚愧,竟不敵人機(jī),再來一局,勝天半子,終于贏了!
總結(jié)
到此這篇關(guān)于python PyGame五子棋小游戲的文章就介紹到這了,更多相關(guān)python PyGame五子棋內(nèi)容請(qǐng)搜索腳本之家以前的文章或繼續(xù)瀏覽下面的相關(guān)文章希望大家以后多多支持腳本之家!
相關(guān)文章
jupyter notebook tensorflow打印device信息實(shí)例
這篇文章主要介紹了jupyter notebook tensorflow打印device信息實(shí)例,具有很好的參考價(jià)值,希望對(duì)大家有所幫助。一起跟隨小編過來看看吧2020-04-04python直接調(diào)用和使用swig法方調(diào)用c++庫
這篇文章主要介紹了python直接調(diào)用和使用swig法方調(diào)用c++庫,c++運(yùn)算速度快于python,python簡(jiǎn)單易寫。很多時(shí)候?qū)τ谝延械腸++代碼也不想用python重寫,此時(shí)就自然而然地想到用python調(diào)用c或者c++,兩全其美,需要的朋友可以參考一下2022-03-03