R語言列表和數(shù)據(jù)框的具體使用
1.列表
列表“list”是一種比較的特別的對象集合,不同的序號對于不同的元素,當然元素的也可以是不同類型的,那么我們用R語言先簡單來構造一個列表。
1.1創(chuàng)建
> a<-c(1:20) > b<-matrix(1:20,4,5) > mlist<-list(a,b) > mlist [[1]] ?[1] ?1 ?2 ?3 ?4 ?5 ?6 ?7 ?8 ?9 10 11 12 13 14 [15] 15 16 17 18 19 20 ? [[2]] ? ? ?[,1] [,2] [,3] [,4] [,5] [1,] ? ?1 ? ?5 ? ?9 ? 13 ? 17 [2,] ? ?2 ? ?6 ? 10 ? 14 ? 18 [3,] ? ?3 ? ?7 ? 11 ? 15 ? 19 [4,] ? ?4 ? ?8 ? 12 ? 16 ? 20
1.2 訪問
1.2.1 下標訪問
> mlist[1] [[1]] ?[1] ?1 ?2 ?3 ?4 ?5 ?6 ?7 ?8 ?9 10 11 12 13 14 [15] 15 16 17 18 19 20 ? > mlist[2] [[1]] ? ? ?[,1] [,2] [,3] [,4] [,5] [1,] ? ?1 ? ?5 ? ?9 ? 13 ? 17 [2,] ? ?2 ? ?6 ? 10 ? 14 ? 18 [3,] ? ?3 ? ?7 ? 11 ? 15 ? 19 [4,] ? ?4 ? ?8 ? 12 ? 16 ? 20
1.2.2 名稱訪問
> state.center["x"] $x ?[1] ?-86.7509 -127.2500 -111.6250 ?-92.2992 ?[5] -119.7730 -105.5130 ?-72.3573 ?-74.9841 ?[9] ?-81.6850 ?-83.3736 -126.2500 -113.9300 [13] ?-89.3776 ?-86.0808 ?-93.3714 ?-98.1156 [17] ?-84.7674 ?-92.2724 ?-68.9801 ?-76.6459 [21] ?-71.5800 ?-84.6870 ?-94.6043 ?-89.8065 [25] ?-92.5137 -109.3200 ?-99.5898 -116.8510 [29] ?-71.3924 ?-74.2336 -105.9420 ?-75.1449 [33] ?-78.4686 -100.0990 ?-82.5963 ?-97.1239 [37] -120.0680 ?-77.4500 ?-71.1244 ?-80.5056 [41] ?-99.7238 ?-86.4560 ?-98.7857 -111.3300 [45] ?-72.5450 ?-78.2005 -119.7460 ?-80.6665 [49] ?-89.9941 -107.2560
1.2.3 符號訪問
> state.center$x ?[1] ?-86.7509 -127.2500 -111.6250 ?-92.2992 ?[5] -119.7730 -105.5130 ?-72.3573 ?-74.9841 ?[9] ?-81.6850 ?-83.3736 -126.2500 -113.9300 [13] ?-89.3776 ?-86.0808 ?-93.3714 ?-98.1156 [17] ?-84.7674 ?-92.2724 ?-68.9801 ?-76.6459 [21] ?-71.5800 ?-84.6870 ?-94.6043 ?-89.8065 [25] ?-92.5137 -109.3200 ?-99.5898 -116.8510 [29] ?-71.3924 ?-74.2336 -105.9420 ?-75.1449 [33] ?-78.4686 -100.0990 ?-82.5963 ?-97.1239 [37] -120.0680 ?-77.4500 ?-71.1244 ?-80.5056 [41] ?-99.7238 ?-86.4560 ?-98.7857 -111.3300 [45] ?-72.5450 ?-78.2005 -119.7460 ?-80.6665 [49] ?-89.9941 -107.2560
1.3 注意
一個中括號和兩個中括號的區(qū)別
一個中括號輸出的是列表的一個子列表,兩個中括號輸出的是列表的元素
> class(mlist[1]) [1] "list" > class(mlist[[1]]) [1] "integer"
我們添加元素時要注意用兩個中括號
2.數(shù)據(jù)框
數(shù)據(jù)框是R種的一個數(shù)據(jù)結構,他通常是矩陣形式的數(shù)據(jù),但矩陣各列可以是不同類型的,數(shù)據(jù)框每列是一個變量,沒行是一個觀測值。
但是,數(shù)據(jù)框又是一種特殊的列表對象,其class屬性為“data.frame”,各列表成員必須是向量(數(shù)值型、字符型、邏輯型)、因子、數(shù)值型矩陣、列表或者其它數(shù)據(jù)框。向量、因子成員為數(shù)據(jù)框提供一個變量,如果向量非數(shù)值型會被強型轉換為因子。而矩陣、列表、數(shù)據(jù)框等必須和數(shù)據(jù)框具有相同的行數(shù)。
2.1 創(chuàng)建
> state<-data.frame(state.name,state.abb,state.area) > state ? ? ? ?state.name state.abb state.area 1 ? ? ? ? Alabama ? ? ? ?AL ? ? ?51609 2 ? ? ? ? ?Alaska ? ? ? ?AK ? ? 589757 3 ? ? ? ? Arizona ? ? ? ?AZ ? ? 113909 4 ? ? ? ?Arkansas ? ? ? ?AR ? ? ?53104 5 ? ? ?California ? ? ? ?CA ? ? 158693 6 ? ? ? ?Colorado ? ? ? ?CO ? ? 104247 7 ? ? Connecticut ? ? ? ?CT ? ? ? 5009 8 ? ? ? ?Delaware ? ? ? ?DE ? ? ? 2057 9 ? ? ? ? Florida ? ? ? ?FL ? ? ?58560 10 ? ? ? ?Georgia ? ? ? ?GA ? ? ?58876 11 ? ? ? ? Hawaii ? ? ? ?HI ? ? ? 6450 12 ? ? ? ? ?Idaho ? ? ? ?ID ? ? ?83557 13 ? ? ? Illinois ? ? ? ?IL ? ? ?56400 14 ? ? ? ?Indiana ? ? ? ?IN ? ? ?36291 15 ? ? ? ? ? Iowa ? ? ? ?IA ? ? ?56290 16 ? ? ? ? Kansas ? ? ? ?KS ? ? ?82264 17 ? ? ? Kentucky ? ? ? ?KY ? ? ?40395 18 ? ? ?Louisiana ? ? ? ?LA ? ? ?48523 19 ? ? ? ? ?Maine ? ? ? ?ME ? ? ?33215 20 ? ? ? Maryland ? ? ? ?MD ? ? ?10577 21 ?Massachusetts ? ? ? ?MA ? ? ? 8257 22 ? ? ? Michigan ? ? ? ?MI ? ? ?58216 23 ? ? ?Minnesota ? ? ? ?MN ? ? ?84068 24 ? ?Mississippi ? ? ? ?MS ? ? ?47716 25 ? ? ? Missouri ? ? ? ?MO ? ? ?69686 26 ? ? ? ?Montana ? ? ? ?MT ? ? 147138 27 ? ? ? Nebraska ? ? ? ?NE ? ? ?77227 28 ? ? ? ? Nevada ? ? ? ?NV ? ? 110540 29 ?New Hampshire ? ? ? ?NH ? ? ? 9304 30 ? ? New Jersey ? ? ? ?NJ ? ? ? 7836 31 ? ? New Mexico ? ? ? ?NM ? ? 121666 32 ? ? ? New York ? ? ? ?NY ? ? ?49576 33 North Carolina ? ? ? ?NC ? ? ?52586 34 ? North Dakota ? ? ? ?ND ? ? ?70665 35 ? ? ? ? ? Ohio ? ? ? ?OH ? ? ?41222 36 ? ? ? Oklahoma ? ? ? ?OK ? ? ?69919 37 ? ? ? ? Oregon ? ? ? ?OR ? ? ?96981 38 ? Pennsylvania ? ? ? ?PA ? ? ?45333 39 ? Rhode Island ? ? ? ?RI ? ? ? 1214 40 South Carolina ? ? ? ?SC ? ? ?31055 41 ? South Dakota ? ? ? ?SD ? ? ?77047 42 ? ? ?Tennessee ? ? ? ?TN ? ? ?42244 43 ? ? ? ? ?Texas ? ? ? ?TX ? ? 267339 44 ? ? ? ? ? Utah ? ? ? ?UT ? ? ?84916 45 ? ? ? ?Vermont ? ? ? ?VT ? ? ? 9609 46 ? ? ? Virginia ? ? ? ?VA ? ? ?40815 47 ? ? Washington ? ? ? ?WA ? ? ?68192 48 ?West Virginia ? ? ? ?WV ? ? ?24181 49 ? ? ?Wisconsin ? ? ? ?WI ? ? ?56154 50 ? ? ? ?Wyoming ? ? ? ?WY ? ? ?97914 >?
2.2 訪問
2.2.1 下標訪問
> state[1] state.name 1 Alabama 2 Alaska 3 Arizona 4 Arkansas 5 California 6 Colorado 7 Connecticut 8 Delaware 9 Florida 10 Georgia 11 Hawaii 12 Idaho 13 Illinois 14 Indiana 15 Iowa 16 Kansas 17 Kentucky 18 Louisiana 19 Maine 20 Maryland 21 Massachusetts 22 Michigan 23 Minnesota 24 Mississippi 25 Missouri 26 Montana 27 Nebraska 28 Nevada 29 New Hampshire 30 New Jersey 31 New Mexico 32 New York 33 North Carolina 34 North Dakota 35 Ohio 36 Oklahoma 37 Oregon 38 Pennsylvania 39 Rhode Island 40 South Carolina 41 South Dakota 42 Tennessee 43 Texas 44 Utah 45 Vermont 46 Virginia 47 Washington 48 West Virginia 49 Wisconsin 50 Wyoming
2.2.2 名稱訪問
> state["state.name"] state.name 1 Alabama 2 Alaska 3 Arizona 4 Arkansas 5 California 6 Colorado 7 Connecticut 8 Delaware 9 Florida 10 Georgia 11 Hawaii 12 Idaho 13 Illinois 14 Indiana 15 Iowa 16 Kansas 17 Kentucky 18 Louisiana 19 Maine 20 Maryland 21 Massachusetts 22 Michigan 23 Minnesota 24 Mississippi 25 Missouri 26 Montana 27 Nebraska 28 Nevada 29 New Hampshire 30 New Jersey 31 New Mexico 32 New York 33 North Carolina 34 North Dakota 35 Ohio 36 Oklahoma 37 Oregon 38 Pennsylvania 39 Rhode Island 40 South Carolina 41 South Dakota 42 Tennessee 43 Texas 44 Utah 45 Vermont 46 Virginia 47 Washington 48 West Virginia 49 Wisconsin 50 Wyoming
2.2.3 符號訪問
> state$state.name [1] "Alabama" "Alaska" [3] "Arizona" "Arkansas" [5] "California" "Colorado" [7] "Connecticut" "Delaware" [9] "Florida" "Georgia" [11] "Hawaii" "Idaho" [13] "Illinois" "Indiana" [15] "Iowa" "Kansas" [17] "Kentucky" "Louisiana" [19] "Maine" "Maryland" [21] "Massachusetts" "Michigan" [23] "Minnesota" "Mississippi" [25] "Missouri" "Montana" [27] "Nebraska" "Nevada" [29] "New Hampshire" "New Jersey" [31] "New Mexico" "New York" [33] "North Carolina" "North Dakota" [35] "Ohio" "Oklahoma" [37] "Oregon" "Pennsylvania" [39] "Rhode Island" "South Carolina" [41] "South Dakota" "Tennessee" [43] "Texas" "Utah" [45] "Vermont" "Virginia" [47] "Washington" "West Virginia" [49] "Wisconsin" "Wyoming"
2.2.4 函數(shù)訪問
> attach(state) The following objects are masked from package:datasets:
2.2.4 函數(shù)訪問
> attach(state) The following objects are masked from package:datasets: state.abb, state.area, state.name > state.name [1] "Alabama" "Alaska" [3] "Arizona" "Arkansas" [5] "California" "Colorado" [7] "Connecticut" "Delaware" [9] "Florida" "Georgia" [11] "Hawaii" "Idaho" [13] "Illinois" "Indiana" [15] "Iowa" "Kansas" [17] "Kentucky" "Louisiana" [19] "Maine" "Maryland" [21] "Massachusetts" "Michigan" [23] "Minnesota" "Mississippi" [25] "Missouri" "Montana" [27] "Nebraska" "Nevada" [29] "New Hampshire" "New Jersey" [31] "New Mexico" "New York" [33] "North Carolina" "North Dakota" [35] "Ohio" "Oklahoma" [37] "Oregon" "Pennsylvania" [39] "Rhode Island" "South Carolina" [41] "South Dakota" "Tennessee" [43] "Texas" "Utah" [45] "Vermont" "Virginia" [47] "Washington" "West Virginia" [49] "Wisconsin" "Wyoming"
到此這篇關于R語言列表和數(shù)據(jù)框的具體使用的文章就介紹到這了,更多相關R語言列表和數(shù)據(jù)框 內容請搜索腳本之家以前的文章或繼續(xù)瀏覽下面的相關文章希望大家以后多多支持腳本之家!
相關文章
R語言繪制數(shù)據(jù)可視化Dumbbell?plot啞鈴圖
這篇文章主要為大家介紹了R語言繪制數(shù)據(jù)可視化Dumbbell?plot啞鈴圖的實現(xiàn)步驟詳解,有需要的朋友可以借鑒參考下,希望能夠有所幫助,祝大家多多進步2022-02-02R語言 實現(xiàn)將factor轉換成numeric方法
這篇文章主要介紹了R語言 實現(xiàn)將factor轉換成numeric方法,具有很好的參考價值,希望對大家有所幫助。一起跟隨小編過來看看吧2021-03-03基于R/RStudio中安裝包“無法與服務器建立連接”的解決方案
這篇文章主要介紹了基于R/RStudio中安裝包“無法與服務器建立連接”的解決方案,具有很好的參考價值,希望對大家有所幫助。一起跟隨小編過來看看吧2021-04-04