云計(jì)算實(shí)驗(yàn):Java?MapReduce編程
實(shí)驗(yàn)題目:
MapReduce:編程
實(shí)驗(yàn)內(nèi)容:
本實(shí)驗(yàn)利用 Hadoop 提供的 Java API 進(jìn)行編程進(jìn)行 MapReduce 編程。
實(shí)驗(yàn)?zāi)繕?biāo):
- 掌握
MapReduce編程。 - 理解
MapReduce原理
【實(shí)驗(yàn)作業(yè)】簡(jiǎn)單流量統(tǒng)計(jì)
有如下這樣的日志文件:
13726230503 00-FD-07-A4-72-B8:CMCC 120.196.100.82 i02.c.aliimg.com 2481 24681 200
13726230513 00-FD-07-A4-72-B8:CMCC 120.196.40.8 i02.c.aliimg.com 248 0 200
13826230523 00-FD-07-A4-72-B8:CMCC 120.196.100.82 i02.c.aliimg.com 2481 24681 200
13726230533 00-FD-07-A4-72-B8:CMCC 120.196.100.82 i02.c.aliimg.com 2481 24681 200
13726230543 00-FD-07-A4-72-B8:CMCC 120.196.100.82 Video website 1527 2106 200
13926230553 00-FD-07-A4-72-B8:CMCC 120.196.100.82 i02.c.aliimg.com 2481 24681 200
13826230563 00-FD-07-A4-72-B8:CMCC 120.196.100.82 i02.c.aliimg.com 2481 24681 200
13926230573 00-FD-07-A4-72-B8:CMCC 120.196.100.82 i02.c.aliimg.com 2481 24681 200
18912688533 00-FD-07-A4-72-B8:CMCC 220.196.100.82 Integrated portal 1938 2910 200
18912688533 00-FD-07-A4-72-B8:CMCC 220.196.100.82 i02.c.aliimg.com 3333 21321 200
13726230503 00-FD-07-A4-72-B8:CMCC 120.196.100.82 Search Engines 9531 9531 200
13826230523 00-FD-07-A4-72-B8:CMCC 120.196.100.82 i02.c.aliimg.com 2481 24681 200
13726230503 00-FD-07-A4-72-B8:CMCC 120.196.100.82 i02.c.aliimg.com 2481 24681 200
該日志文件記錄了每個(gè)手機(jī)用戶在一段時(shí)間內(nèi)的網(wǎng)絡(luò)流量信息,具體字段含義為:
手機(jī)號(hào)碼 MAC地址 IP地址 域名 上行流量(字節(jié)數(shù)) 下行流量(字節(jié)數(shù)) 套餐類型
根據(jù)以上日志,統(tǒng)計(jì)出每個(gè)手機(jī)用戶在該時(shí)間段內(nèi)的總流量(上行流量+下行流量),統(tǒng)計(jì)結(jié)果的格式為:
手機(jī)號(hào)碼 字節(jié)數(shù)量
實(shí)驗(yàn)結(jié)果:

實(shí)驗(yàn)代碼:
WcMap.java
import java.io.IOException;
import org.apache.commons.lang.StringUtils;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Mapper;
public class WcMap extends Mapper<LongWritable, Text, Text, LongWritable>{
@Override
protected void map(LongWritable key, Text value, Context context)
throws IOException, InterruptedException {
String str = value.toString();
String[] words = StringUtils.split(str," ",10);
int i=0;
for(String word : words){
if(i==words.length-2||i==words.length-3)
context.write(new Text(words[0]), new LongWritable(Integer.parseInt(word)));
i++;
}
}
}
WcReduce.java
import java.io.IOException;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Reducer;
public class WcReduce extends Reducer<Text, LongWritable, Text, LongWritable>{
@Override
protected void reduce(Text key, Iterable<LongWritable> values,Context context)
throws IOException, InterruptedException {
long count = 0;
for(LongWritable value : values){
count += value.get();
}
context.write(key, new LongWritable(count));
}
}
WcRunner.java
import java.io.IOException;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
import java.util.Scanner;
import org.apache.hadoop.fs.FSDataInputStream;
import org.apache.hadoop.fs.FileSystem;
import java.net.URI;
public class WcRunner{
public static void main(String[] args) throws IOException, ClassNotFoundException, InterruptedException {
Configuration conf = new Configuration();
Job job = Job.getInstance(conf);
job.setJarByClass(WcRunner.class);
job.setMapperClass(WcMap.class);
job.setReducerClass(WcReduce.class);
job.setOutputKeyClass(Text.class);
job.setOutputValueClass(LongWritable.class);
job.setMapOutputKeyClass(Text.class);
job.setMapOutputValueClass(LongWritable.class);
Scanner sc = new Scanner(System.in);
System.out.print("inputPath:");
String inputPath = sc.next();
System.out.print("outputPath:");
String outputPath = sc.next();
try {
FileSystem fs0 = FileSystem.get(new URI("hdfs://master:9000"), new Configuration());
Path hdfsPath = new Path(outputPath);
fs0.copyFromLocalFile(new Path("/headless/Desktop/workspace/mapreduce/WordCount/data/1.txt"),new Path("/mapreduce/WordCount/input/1.txt"));
if(fs0.delete(hdfsPath,true)){
System.out.println("Directory "+ outputPath +" has been deleted successfully!");
}
}catch(Exception e) {
e.printStackTrace();
}
FileInputFormat.setInputPaths(job, new Path("hdfs://master:9000"+inputPath));
FileOutputFormat.setOutputPath(job, new Path("hdfs://master:9000"+outputPath));
job.waitForCompletion(true);
try {
FileSystem fs = FileSystem.get(new URI("hdfs://master:9000"), new Configuration());
Path srcPath = new Path(outputPath+"/part-r-00000");
FSDataInputStream is = fs.open(srcPath);
System.out.println("Results:");
while(true) {
String line = is.readLine();
if(line == null) {
break;
}
System.out.println(line);
}
is.close();
}catch(Exception e) {
e.printStackTrace();
}
}
}
【實(shí)驗(yàn)作業(yè)】索引倒排輸出行號(hào)
在索引倒排實(shí)驗(yàn)中,我們可以得到每個(gè)單詞分布在哪些文件中,以及在每個(gè)文件中出現(xiàn)的次數(shù),修改以上實(shí)現(xiàn),在輸出的倒排索引結(jié)果中可以得到每個(gè)單詞在每個(gè)文件中的具體行號(hào)信息。輸出結(jié)果的格式如下:
單詞 文件名:行號(hào),文件名:行號(hào),文件名:行號(hào)
實(shí)驗(yàn)結(jié)果:
MapReduce在3.txt的第一行出現(xiàn)了兩次所以有兩個(gè)1

import java.io.*;
import java.util.StringTokenizer;
import org.apache.hadoop.io.*;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.lib.input.FileSplit;
public class MyMapper extends Mapper<Object,Text,Text,Text>{
private Text keyInfo = new Text();
private Text valueInfo = new Text();
private FileSplit split;
int num=0;
public void map(Object key,Text value,Context context)
throws IOException,InterruptedException{
num++;
split = (FileSplit)context.getInputSplit();
StringTokenizer itr = new StringTokenizer(value.toString());
while(itr.hasMoreTokens()){
keyInfo.set(itr.nextToken()+" "+split.getPath().getName().toString());
valueInfo.set(num+"");
context.write(keyInfo,valueInfo);
}
}
}
import java.io.*;
import org.apache.hadoop.io.*;
import org.apache.hadoop.mapreduce.Reducer;
public class MyCombiner extends Reducer<Text,Text,Text,Text>{
private Text info = new Text();
public void reduce(Text key,Iterable<Text>values,Context context)
throws IOException, InterruptedException{
String sum = "";
for(Text value:values){
sum += value.toString()+" ";
}
String record = key.toString();
String[] str = record.split(" ");
key.set(str[0]);
info.set(str[1]+":"+sum);
context.write(key,info);
}
}
import java.io.IOException;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Reducer;
public class MyReducer extends Reducer<Text,Text,Text,Text>{
private Text result = new Text();
public void reduce(Text key,Iterable<Text>values,Context context) throws
IOException, InterruptedException{
String value =new String();
for(Text value1:values){
value += value1.toString()+" ; ";
}
result.set(value);
context.write(key,result);
}
}
import java.io.IOException;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
import java.util.Scanner;
import org.apache.hadoop.fs.FSDataInputStream;
import org.apache.hadoop.fs.FileSystem;
import java.net.URI;
public class MyRunner {
public static void main(String[] args) throws IOException, ClassNotFoundException, InterruptedException {
Configuration conf = new Configuration();
Job job = Job.getInstance(conf);
job.setJarByClass(MyRunner.class);
job.setMapperClass(MyMapper.class);
job.setReducerClass(MyReducer.class);
job.setCombinerClass(MyCombiner.class);
job.setOutputKeyClass(Text.class);
job.setOutputValueClass(Text.class);
job.setMapOutputKeyClass(Text.class);
job.setMapOutputValueClass(Text.class);
Scanner sc = new Scanner(System.in);
System.out.print("inputPath:");
String inputPath = sc.next();
System.out.print("outputPath:");
String outputPath = sc.next();
try {
FileSystem fs0 = FileSystem.get(new URI("hdfs://master:9000"), new Configuration());
Path hdfsPath = new Path(outputPath);
if(fs0.delete(hdfsPath,true)){
System.out.println("Directory "+ outputPath +" has been deleted successfully!");
}
}catch(Exception e) {
e.printStackTrace();
}
FileInputFormat.setInputPaths(job, new Path("hdfs://master:9000"+inputPath));
FileOutputFormat.setOutputPath(job, new Path("hdfs://master:9000"+outputPath));
job.waitForCompletion(true);
try {
FileSystem fs = FileSystem.get(new URI("hdfs://master:9000"), new Configuration());
Path srcPath = new Path(outputPath+"/part-r-00000");
FSDataInputStream is = fs.open(srcPath);
System.out.println("Results:");
while(true) {
String line = is.readLine();
if(line == null) {
break;
}
System.out.println(line);
}
is.close();
}catch(Exception e) {
e.printStackTrace();
}
}
}
到此這篇關(guān)于云計(jì)算實(shí)驗(yàn):Java MapReduce編程的文章就介紹到這了,更多相關(guān)Java MapReduce編程內(nèi)容請(qǐng)搜索腳本之家以前的文章或繼續(xù)瀏覽下面的相關(guān)文章希望大家以后多多支持腳本之家!
相關(guān)文章
Java 如何使用Feign發(fā)送HTTP請(qǐng)求
這篇文章主要介紹了Java 如何使用Feign發(fā)送HTTP請(qǐng)求,幫助大家更好的理解和學(xué)習(xí)Java,感興趣的朋友可以了解下2020-11-11
springboot項(xiàng)目防止XSS攻擊和sql注入方式
這篇文章主要介紹了springboot項(xiàng)目防止XSS攻擊和sql注入方式,具有很好的參考價(jià)值,希望對(duì)大家有所幫助。如有錯(cuò)誤或未考慮完全的地方,望不吝賜教2023-07-07
Druid連接池未關(guān)閉導(dǎo)致內(nèi)存泄漏問題
這篇文章主要介紹了Druid連接池未關(guān)閉導(dǎo)致內(nèi)存泄漏問題,具有很好的參考價(jià)值,希望對(duì)大家有所幫助,如有錯(cuò)誤或未考慮完全的地方,望不吝賜教2023-12-12
Mybatis學(xué)習(xí)筆記之動(dòng)態(tài)SQL揭秘
這篇文章主要給大家介紹了關(guān)于Mybatis學(xué)習(xí)筆記之動(dòng)態(tài)SQL的相關(guān)資料,小編覺得挺不錯(cuò)的,對(duì)大家學(xué)習(xí)或者使用Mybatis會(huì)有一定的幫助,現(xiàn)在分享給大家,也給大家做個(gè)參考。一起跟隨小編過來看看吧2018-11-11
Java基礎(chǔ)之創(chuàng)建虛擬機(jī)對(duì)象的過程詳細(xì)總結(jié)
本文基于虛擬機(jī)HotSpot和常用的內(nèi)存區(qū)域Java堆深入對(duì)象分配、布局和訪問的全過程,文中有非常詳細(xì)的圖文解說,對(duì)正在學(xué)習(xí)java的小伙伴們很有幫助,需要的朋友可以參考下2021-05-05
idea?springBoot項(xiàng)目自動(dòng)注入mapper為空?qǐng)?bào)錯(cuò)的解決方法
這篇文章主要介紹了idea?springBoot項(xiàng)目自動(dòng)注入mapper為空?qǐng)?bào)錯(cuò)的解決方法,本文給大家介紹的非常詳細(xì),對(duì)大家的學(xué)習(xí)或工作具有一定的參考借鑒價(jià)值,需要的朋友可以參考下2023-03-03

