R語言學(xué)習(xí)筆記缺失數(shù)據(jù)的Bootstrap與Jackknife方法
一、題目

下面再加入缺失的情況來繼續(xù)深入探討,同樣還是如習(xí)題1.6的構(gòu)造方式來加入缺失值,其中a=2, b = 0

我們將進行如下幾種操作:

二、解答
a)Bootstrap與Jackknife進行估計
首先構(gòu)建生成數(shù)據(jù)函數(shù)。
# 生成數(shù)據(jù)
# 生成數(shù)據(jù)
GenerateData <- function(a = 0, b = 0) {
y <- matrix(nrow = 3, ncol = 100)
z <- matrix(rnorm(300), nrow = 3)
y[1, ] <- 1 + z[1, ]
y[2, ] <- 5 + 2 * z[1, ] + z[2, ]
u <- a * (y[1, ] - 1) + b * (y[2, ] - 5) + z[3, ]
# m2 <- 1 * (u < 0)
y[3, ] <- y[2, ]
y[3, u < 0] <- NA
dat_comp <- data.frame(y1 = y[1, ], y2 = y[2, ])
dat_incomp <- data.frame(y1 = y[1, ], y2 = y[3, ])
# dat_incomp <- na.omit(dat_incomp)
return(list(dat_comp = dat_comp, dat_incomp = dat_incomp))
}
Bootstrap與Jackknife的函數(shù):
Bootstrap1 <- function(Y, B = 200, fun) {
Y_len <- length(Y)
mat_boots <- matrix(sample(Y, Y_len * B, replace = T), nrow = B, ncol = Y_len)
statis_boots <- apply(mat_boots, 1, fun)
boots_mean <- mean(statis_boots)
boots_sd <- sd(statis_boots)
return(list(mean = boots_mean, sd = boots_sd))
}
Jackknife1 <- function(Y, fun) {
Y_len <- length(Y)
mat_jack <- sapply(1:Y_len, function(i) Y[-i])
redu_samp <- apply(mat_jack, 2, fun)
jack_mean <- mean(redu_samp)
jack_sd <- sqrt(((Y_len - 1) ^ 2 / Y_len) * var(redu_samp))
return(list(mean = jack_mean, sd = jack_sd))
}
進行重復(fù)試驗所需的函數(shù):
RepSimulation <- function(seed = 2018, fun) {
set.seed(seed)
dat <- GenerateData()
dat_comp_y2 <- dat$dat_comp$y2
boots_sd <- Bootstrap1(dat_comp_y2, B = 200, fun)$sd
jack_sd <- Jackknife1(dat_comp_y2, fun)$sd
return(c(boots_sd = boots_sd, jack_sd = jack_sd))
}
下面重復(fù)100次實驗進行 Y2的均值與變異系數(shù)標(biāo)準(zhǔn)差的估計:
nrep <- 100 ## 均值 fun = mean mat_boots_jack <- sapply(1:nrep, RepSimulation, fun) apply(mat_boots_jack, 1, function(x) paste(round(mean(x), 3), '±', round(sd(x), 3)))
## 變異系數(shù) fun = function(x) sd(x) / mean(x) mat_boots_jack <- sapply(1:nrep, RepSimulation, fun) apply(mat_boots_jack, 1, function(x) paste(round(mean(x), 3), '±', round(sd(x), 3)))
從上面可以發(fā)現(xiàn),Bootstrap與Jackknife兩者估計結(jié)果較為相近,其中對均值標(biāo)準(zhǔn)差的估計,Jackknife的方差更小。這其實較為符合常識:Jackknife估計每次只取出一個樣本,用剩下的樣本來作為樣本整體;而Bootstrap每次都會比較隨機地重抽樣,隨機性相對較高,所以重復(fù)100次模擬實驗,導(dǎo)致其方差相對較大。
下面我們用計算公式來進行推導(dǎo)。
b)均值與變異系數(shù)(大樣本)的標(biāo)準(zhǔn)差解析式推導(dǎo)與計算
均值

變異系數(shù)(大樣本近似)
## 變異系數(shù)
sd(sapply(1:10000, function(x) {
set.seed(x)
dat <- GenerateData(a = 0, b = 0)
sd(dat$dat_comp$y2) / mean(dat$dat_comp$y2)
}))
變異系數(shù)大樣本近似值為:0.03717648,說明前面的Bootstrap與Jackknife兩種方法估計的都較為準(zhǔn)確。
c)缺失插補后的Bootstrap與Jackknife
構(gòu)造線性填補的函數(shù),并進行線性填補。
DatImputation <- function(dat_incomp) {
dat_imp <- dat_incomp
lm_model = lm(y2 ~ y1, data = na.omit(dat_incomp))
# 找出y2缺失對應(yīng)的那部分data
na_ind = is.na(dat_incomp$y2)
na_dat = dat_incomp[na_ind, ]
# 將缺失數(shù)據(jù)進行填補
dat_imp[na_ind, 'y2'] = predict(lm_model, na_dat)
return(dat_imp)
}
dat <- GenerateData(a = 2, b = 0)
dat_imp <- DatImputation(dat$dat_incomp)
fun = mean Bootstrap1(dat_imp$y2, B = 200, fun)$sd
Jackknife1(dat_imp$y2, fun)$sd
fun = function(x) sd(x) / mean(x) Bootstrap1(dat_imp$y2, B = 200, fun)$sd
Jackknife1(dat_imp$y2, fun)$sd
Bootstrap與Jackknife的填補結(jié)果,很大一部分是由于數(shù)據(jù)的缺失會造成距離真實值較遠(yuǎn)。但單從兩種方法估計出來的值比較接近。
c)缺失插補前的Bootstrap與Jackknife
先構(gòu)建相關(guān)的函數(shù):
Array2meancv <- function(j, myarray) {
dat_incomp <- as.data.frame(myarray[, j, ])
names(dat_incomp) <- c('y1', 'y2')
dat_imp <- DatImputation(dat_incomp)
y2_mean <- mean(dat_imp$y2)
y2_cv <- sd(dat_imp$y2) / y2_mean
return(c(mean = y2_mean, cv = y2_cv))
}
Bootstrap_imp <- function(dat_incomp, B = 200) {
n <- nrow(dat_incomp)
array_boots <- array(dim = c(n, B, 2))
mat_boots_ind <- matrix(sample(1:n, n * B, replace = T), nrow = B, ncol = n)
array_boots[, , 1] <- sapply(1:B, function(i) dat_incomp$y1[mat_boots_ind[i, ]])
array_boots[, , 2] <- sapply(1:B, function(i) dat_incomp$y2[mat_boots_ind[i, ]])
mean_cv_imp <- sapply(1:B, Array2meancv, array_boots)
boots_imp_mean <- apply(mean_cv_imp, 1, mean)
boots_imp_sd <- apply(mean_cv_imp, 1, sd)
return(list(mean = boots_imp_mean, sd = boots_imp_sd))
}
Jackknife_imp <- function(dat_incomp) {
n <- nrow(dat_incomp)
array_jack <- array(dim = c(n - 1, n, 2))
array_jack[, , 1] <- sapply(1:n, function(i) dat_incomp[-i, 'y1'])
array_jack[, , 2] <- sapply(1:n, function(i) dat_incomp[-i, 'y2'])
mean_cv_imp <- sapply(1:n, Array2meancv, array_jack)
jack_imp_mean <- apply(mean_cv_imp, 1, mean)
jack_imp_sd <- apply(mean_cv_imp, 1, function(x) sqrt(((n - 1) ^ 2 / n) * var(x)))
return(list(mean = jack_imp_mean, sd = jack_imp_sd))
}
然后看看兩種方式估計出來的結(jié)果:
Bootstrap_imp(dat$dat_incomp)$sd
Jackknife_imp(dat$dat_incomp)$sd
缺失插補前進行Bootstrap與Jackknife也還是有一定的誤差,標(biāo)準(zhǔn)差都相對更大,表示波動會比較大。具體表現(xiàn)情況下面我們多次重復(fù)模擬實驗,通過90%置信區(qū)間來看各個方法的優(yōu)劣。
d)比較各種方式的90%置信區(qū)間情況(重復(fù)100次實驗)
RepSimulationCI <- function(seed = 2018, stats = 'mean') {
mean_true <- 5
cv_true <- sqrt(5) / 5
myjudge <- function(x, value) {
return(ifelse((x$mean - qnorm(0.95) * x$sd < value) & (x$mean + qnorm(0.95) * x$sd > value), 1, 0))
}
if(stats == 'mean') {
fun = mean
value = mean_true
} else if(stats == 'cv') {
fun = function(x) sd(x) / mean(x)
value = cv_true
}
set.seed(seed)
boots_after_ind <- boots_before_ind <- jack_after_ind <- jack_before_ind <- 0
dat <- GenerateData(a = 2, b = 0)
dat_incomp <- dat$dat_incomp
# after imputation
dat_imp <- DatImputation(dat_incomp)
boots_after <- Bootstrap1(dat_imp$y2, B = 200, fun)
boots_after_ind <- myjudge(boots_after, value)
jack_after <- Jackknife1(dat_imp$y2, fun)
jack_after_ind <- myjudge(jack_after, value)
# before imputation
boots_before <- Bootstrap_imp(dat_incomp)
jack_before <- Jackknife_imp(dat_incomp)
if(stats == 'mean') {
boots_before$mean <- boots_before$mean[1]
boots_before$sd <- boots_before$sd[1]
jack_before$mean <- jack_before$mean[1]
jack_before$sd <- jack_before$sd[1]
} else if(stats == 'cv') {
boots_before$mean <- boots_before$mean[2]
boots_before$sd <- boots_before$sd[2]
jack_before$mean <- jack_before$mean[2]
jack_before$sd <- jack_before$sd[2]
}
boots_before_ind <- myjudge(boots_before, value)
jack_before_ind <- myjudge(jack_before, value)
return(c(boots_after = boots_after_ind,
boots_before = boots_before_ind,
jack_after = jack_after_ind,
jack_before = jack_before_ind))
}
重復(fù)100次實驗,均值情況:
nrep <- 100
result_mean <- apply(sapply(1:nrep, RepSimulationCI, 'mean'), 1, sum)
names(result_mean) <- c('boots_after', 'boots_before', 'jack_after', 'jack_before')
result_mean
變異系數(shù)情況:
result_cv <- apply(sapply(1:nrep, RepSimulationCI, 'cv'), 1, sum)
names(result_cv) <- c('boots_after', 'boots_before', 'jack_after', 'jack_before')
result_cv
上面的數(shù)字越表示90%置信區(qū)間覆蓋真實值的個數(shù),數(shù)字越大表示覆蓋的次數(shù)越多,也就說明該方法會相對更好。
填補之前進行Bootstrap或Jackknife
無論是均值還是變異系數(shù),通過模擬實驗都能看出,在填補之前進行Bootstrap或Jackknife,其估計均會遠(yuǎn)優(yōu)于在填補之后進行Bootstrap或Jackknife。而具體到Bootstrap或Jackknife,這兩種方法相差無幾。
填補之后進行Bootstrap或Jackknife
在填補之后進行Bootstrap或Jackknife,效果都會很差,其實仔細(xì)思考后也能夠理解,本身缺失了近一半的數(shù)據(jù),然后填補會帶來很大的偏差,此時我們再從中抽樣,有很大可能抽出來的絕大多數(shù)都是原本填補的有很大偏差的樣本,這樣估計就會更為不準(zhǔn)了。
當(dāng)然,從理論上說,填補之前進行Bootstrap或Jackknife是較為合理的,這樣對每個Bootstrap或Jackknife樣本,都可以用當(dāng)前的觀測值去填補當(dāng)前的缺失值,這樣每次填補可能花費的時間將對較長,但實際卻更有效。
以上就是R語言學(xué)習(xí)筆記缺失數(shù)據(jù)的Bootstrap與Jackknife方法的詳細(xì)內(nèi)容,更多關(guān)于R語言學(xué)習(xí)筆記的資料請關(guān)注腳本之家其它相關(guān)文章!
相關(guān)文章
R語言實現(xiàn)ggplot重繪天貓雙十一銷售額曲線圖過程
這篇文章主要為大家介紹了如何使用ggplot繪制天貓雙十一銷售額曲線圖的實現(xiàn)過程,有需要的朋友可以借鑒參考下,希望能夠有所幫助,祝大家多多進步,早日升職加薪2021-11-11

