R語(yǔ)言繪圖時(shí)輸出希臘字符上下標(biāo)及數(shù)學(xué)公式實(shí)現(xiàn)方法
通常在我們寫(xiě)論文時(shí),所需要的統(tǒng)計(jì)圖是非常嚴(yán)謹(jǐn)?shù)模锩娴南ED字符與上下腳標(biāo)都必須要嚴(yán)格書(shū)寫(xiě)。因此在使用R
繪圖時(shí),如何在我們目標(biāo)圖中使用希臘字符、上標(biāo)、下標(biāo)及一些數(shù)學(xué)公式呢?在本博客中我們會(huì)進(jìn)行詳細(xì)的說(shuō)明。
后面我們都將以一個(gè)最簡(jiǎn)單的繪圖為例,只是將其標(biāo)題進(jìn)行修改。
希臘字母
使用希臘字符、上標(biāo)、下標(biāo)及數(shù)學(xué)公式,都需要利用一個(gè)函數(shù):expression()
,具體使用方式如下:
plot(cars) title(main = expression(Sigma))
輸出:
上下標(biāo)
expression()
中的下標(biāo)為[]
,上標(biāo)為^
,空格為~
,連接符為*
。示例代碼如下:
plot(cars) title(main = expression(Sigma[1]~'a'*'n'*'d'~Sigma^2))
輸出:
paste
想達(dá)到上面的效果,我們其實(shí)可以使用paste()
與expression()
進(jìn)行組合,不需要上述繁瑣的過(guò)程,也能夠達(dá)到我們上述一模一樣的輸出,并且方便快捷:
plot(cars) title(main = expression(paste(Sigma[1], ' and ', Sigma^2)))
一個(gè)復(fù)雜的例子
目標(biāo):
代碼:
expression(paste((frac(1, m)+frac(1, n))^-1, ABCD[paste(m, ',', n)]))
進(jìn)階
在我們想批量產(chǎn)生大量含有不同變量值的標(biāo)題時(shí),如果遇到變量與公式的混合輸出該如何操作,
可參考前文:R語(yǔ)言繪圖公式與變量對(duì)象混合拼接實(shí)現(xiàn)方法
數(shù)學(xué)公式
最后的數(shù)學(xué)公式,只需要在expression()
中進(jìn)行相應(yīng)的符號(hào)連接即可
具體要求可參考:Mathematical Annotation in R
鑒于其很不穩(wěn)定,這里將里面的細(xì)節(jié)搬運(yùn)過(guò)來(lái)。
(下表也可以直接在 R help 中搜索 plotmath
獲取。)
Syntax | Meaning |
---|---|
x + y | x plus y |
x - y | x minus y |
x*y | juxtapose x and y |
x/y | x forwardslash y |
x %±% y | x plus or minus y |
x %/% y | x divided by y |
x %*% y | x times y |
x %.% y | x cdot y |
x[i] | x subscript i |
x^2 | x superscript 2 |
paste(x, y, z) | juxtapose x, y, and z |
sqrt(x) | square root of x |
sqrt(x, y) | yth root of x |
x == y | x equals y |
x != y | x is not equal to y |
x < y | x is less than y |
x <= y | x is less than or equal to y |
x > y | x is greater than y |
x >= y | x is greater than or equal to y |
!x | not x |
x %~~% y | x is approximately equal to y |
x %=~% y | x and y are congruent |
x %==% y | x is defined as y |
x %prop% y | x is proportional to y |
x %~% y | x is distributed as y |
plain(x) | draw x in normal font |
bold(x) | draw x in bold font |
italic(x) | draw x in italic font |
bolditalic(x) | draw x in bolditalic font |
symbol(x) | draw x in symbol font |
list(x, y, z) | comma-separated list |
… | ellipsis (height varies) |
cdots | ellipsis (vertically centred) |
ldots | ellipsis (at baseline) |
x %subset% y | x is a proper subset of y |
x %subseteq% y | x is a subset of y |
x %notsubset% y | x is not a subset of y |
x %supset% y | x is a proper superset of y |
x %supseteq% y | x is a superset of y |
x %in% y | x is an element of y |
x %notin% y | x is not an element of y |
hat(x) | x with a circumflex |
tilde(x) | x with a tilde |
dot(x) | x with a dot |
ring(x) | x with a ring |
bar(xy) | xy with bar |
widehat(xy) | xy with a wide circumflex |
widetilde(xy) | xy with a wide tilde |
x %<->% y | x double-arrow y |
x %->% y | x right-arrow y |
x %<-% y | x left-arrow y |
x %up% y | x up-arrow y |
x %down% y | x down-arrow y |
x %<=>% y | x is equivalent to y |
x %=>% y | x implies y |
x %<=% y | y implies x |
x %dblup% y | x double-up-arrow y |
x %dbldown% y | x double-down-arrow y |
alpha – omega | Greek symbols |
Alpha – Omega | uppercase Greek symbols |
theta1, phi1, sigma1, omega1 | cursive Greek symbols |
Upsilon1 | capital upsilon with hook |
aleph | first letter of Hebrew alphabet |
infinity | infinity symbol |
partialdiff | partial differential symbol |
nabla | nabla, gradient symbol |
32*degree | 32 degrees |
60*minute | 60 minutes of angle |
30*second | 30 seconds of angle |
displaystyle(x) | draw x in normal size (extra spacing) |
textstyle(x) | draw x in normal size |
scriptstyle(x) | draw x in small size |
scriptscriptstyle(x) | draw x in very small size |
underline(x) | draw x underlined |
x ~~ y | put extra space between x and y |
x + phantom(0) + y | leave gap for “0”, but don't draw it |
x + over(1, phantom(0)) | leave vertical gap for “0” (don't draw) |
frac(x, y) | x over y |
over(x, y) | x over y |
atop(x, y) | x over y (no horizontal bar) |
sum(x[i], i==1, n) | sum x[i] for i equals 1 to n |
prod(plain§(X==x), x) | product of P(X=x) for all values of x |
integral(f(x)*dx, a, b) | definite integral of f(x) wrt x |
union(A[i], i==1, n) | union of A[i] for i equals 1 to n |
intersect(A[i], i==1, n) | intersection of A[i] |
lim(f(x), x %->% 0) | limit of f(x) as x tends to 0 |
min(g(x), x > 0) | minimum of g(x) for x greater than 0 |
inf(S) | infimum of S |
sup(S) | supremum of S |
x^y + z | normal operator precedence |
x^(y + z) | visible grouping of operands |
x^{y + z} | invisible grouping of operands |
group("(",list(a, b),"]") | specify left and right delimiters |
bgroup("(",atop(x,y),")") | use scalable delimiters |
group(lceil, x, rceil) | special delimiters |
group(lfloor, x, rfloor) | special delimiters |
以上就是R語(yǔ)言繪圖時(shí)輸出希臘字符上下標(biāo)及數(shù)學(xué)公式實(shí)現(xiàn)方法的詳細(xì)內(nèi)容,更多關(guān)于R語(yǔ)言繪圖輸出希臘字符上下標(biāo)及數(shù)學(xué)公式的資料請(qǐng)關(guān)注腳本之家其它相關(guān)文章!
- R語(yǔ)言兩組變量特征相關(guān)關(guān)系熱圖繪制畫(huà)法
- R語(yǔ)言數(shù)據(jù)可視化繪圖bar chart條形圖實(shí)現(xiàn)示例
- R語(yǔ)言繪圖數(shù)據(jù)可視化pie?chart餅圖
- R語(yǔ)言數(shù)據(jù)可視化繪圖Dot plot點(diǎn)圖畫(huà)法示例
- R語(yǔ)言繪圖數(shù)據(jù)可視化Ridgeline plot山脊圖畫(huà)法
- R語(yǔ)言數(shù)據(jù)可視化繪圖Slope chart坡度圖畫(huà)法
- R語(yǔ)言繪制corrplot相關(guān)熱圖分析美化示例及詳細(xì)圖解
相關(guān)文章
R語(yǔ)言中cbind、rbind和merge函數(shù)的使用與區(qū)別
這篇文章主要介紹了R語(yǔ)言中cbind、rbind和merge函數(shù)的使用與區(qū)別,文中通過(guò)示例代碼介紹的非常詳細(xì),對(duì)大家的學(xué)習(xí)或者工作具有一定的參考學(xué)習(xí)價(jià)值,需要的朋友們下面隨著小編來(lái)一起學(xué)習(xí)學(xué)習(xí)吧2021-03-03基于R語(yǔ)言xlsx安裝遇到的問(wèn)題及解決方案
這篇文章主要介紹了基于R語(yǔ)言xlsx安裝遇到的問(wèn)題及解決方案,具有很好的參考價(jià)值,希望對(duì)大家有所幫助。一起跟隨小編過(guò)來(lái)看看吧2021-04-04解決R語(yǔ)言 數(shù)據(jù)不平衡的問(wèn)題
這篇文章主要介紹了解決R語(yǔ)言 數(shù)據(jù)不平衡的問(wèn)題,具有很好的參考價(jià)值,希望對(duì)大家有所幫助。一起跟隨小編過(guò)來(lái)看看吧2021-03-03R語(yǔ)言數(shù)據(jù)類(lèi)型和對(duì)象深入講解
這篇文章主要介紹了R語(yǔ)言數(shù)據(jù)類(lèi)型和對(duì)象深入講解,文中列舉的實(shí)例講解的很清楚,有感興趣的同學(xué)可以學(xué)習(xí)下2021-03-03R語(yǔ)言因子型數(shù)值轉(zhuǎn)數(shù)值型的操作
這篇文章主要介紹了R語(yǔ)言因子型數(shù)值轉(zhuǎn)數(shù)值型的操作,具有很好的參考價(jià)值,希望對(duì)大家有所幫助。一起跟隨小編過(guò)來(lái)看看吧2021-04-04R語(yǔ)言中矩陣matrix和數(shù)據(jù)框data.frame的使用詳解
這篇文章主要介紹了R語(yǔ)言中矩陣matrix和數(shù)據(jù)框data.frame的使用詳解,文中通過(guò)示例代碼介紹的非常詳細(xì),對(duì)大家的學(xué)習(xí)或者工作具有一定的參考學(xué)習(xí)價(jià)值,需要的朋友們下面隨著小編來(lái)一起學(xué)習(xí)學(xué)習(xí)吧2021-03-03詳解R語(yǔ)言實(shí)現(xiàn)前向逐步回歸(前向選擇模型)
本文主要介紹了詳解R語(yǔ)言實(shí)現(xiàn)前向逐步回歸,從實(shí)現(xiàn)原理開(kāi)始,文中通過(guò)示例代碼介紹的非常詳細(xì),具有一定的參考價(jià)值,感興趣的小伙伴們可以參考一下2021-08-08