亚洲乱码中文字幕综合,中国熟女仑乱hd,亚洲精品乱拍国产一区二区三区,一本大道卡一卡二卡三乱码全集资源,又粗又黄又硬又爽的免费视频

利用Java實(shí)現(xiàn)紅黑樹(shù)

 更新時(shí)間:2021年09月15日 09:44:18   作者:胡不慌  
紅黑樹(shù)是眾多“平衡的”搜索樹(shù)模式中的一種,在最壞情況下,它相關(guān)操作的時(shí)間復(fù)雜度為O(log n),接下倆小編將子啊下文詳細(xì)介紹Java是如何實(shí)現(xiàn)紅黑樹(shù)的

1、紅黑樹(shù)的屬性

紅黑樹(shù)是一種二分查找樹(shù),與普通的二分查找樹(shù)不同的一點(diǎn)是,紅黑樹(shù)的每個(gè)節(jié)點(diǎn)都有一個(gè)顏色(color)屬性。該屬性的值要么是紅色,要么是黑色。

通過(guò)限制從根到葉子的任何簡(jiǎn)單路徑上的節(jié)點(diǎn)顏色,紅黑樹(shù)確保沒(méi)有比任何其他路徑長(zhǎng)兩倍的路徑,從而使樹(shù)近似平衡。

假設(shè)紅黑樹(shù)節(jié)點(diǎn)的屬性有鍵(key)、顏色(color)、左子節(jié)點(diǎn)(left)、右子節(jié)點(diǎn)(right),父節(jié)點(diǎn)(parent)。

一棵紅黑樹(shù)必須滿(mǎn)足下面有下面這些特性( 紅黑樹(shù)特性 ):

  • 樹(shù)中的每個(gè)節(jié)點(diǎn)要么是紅色,要么是黑色;
  • 根節(jié)點(diǎn)是黑色;
  • 每個(gè)葉子節(jié)點(diǎn)(null)是黑色;
  • 如果某節(jié)點(diǎn)是紅色的,它的兩個(gè)子節(jié)點(diǎn)都是黑色;
  • 對(duì)于每個(gè)節(jié)點(diǎn)到后面任一葉子節(jié)點(diǎn)(null)的所有路徑,都有相同數(shù)量的黑色節(jié)點(diǎn)。

為了在紅黑樹(shù)代碼中處理邊界條件方便,我們用一個(gè)哨兵變量代替null。對(duì)于一個(gè)紅黑樹(shù)tree,哨兵變量RedBlackTree.NULL(下文代碼中)是一個(gè)和其它節(jié)點(diǎn)有同樣屬性的節(jié)點(diǎn),它的顏色(color)屬性是黑色,其它屬性可以任意取值。

我們使用哨兵變量是因?yàn)槲覀兛梢园岩粋€(gè)節(jié)點(diǎn)node的子節(jié)點(diǎn)null當(dāng)成一個(gè)普通節(jié)點(diǎn)。

在這里,我們使用哨兵變量RedBlackTree.NULL代替樹(shù)中所有的null(所有的葉子節(jié)點(diǎn)及根節(jié)點(diǎn)的父節(jié)點(diǎn))。

我們把從一個(gè)節(jié)點(diǎn)n(不包括)到任一葉子節(jié)點(diǎn)路徑上的黑色節(jié)點(diǎn)的個(gè)數(shù)稱(chēng)為 黑色高度 ,用bh(n)表示。一棵紅黑樹(shù)的黑色高度是其根節(jié)點(diǎn)的黑色高度。

關(guān)于紅黑樹(shù)的搜索,求最小值,求最大值,求前驅(qū),求后繼這些操作的代碼與二分查找樹(shù)的這些操作的代碼基本一致??梢栽谟?code>java實(shí)現(xiàn)二分查找樹(shù)查看。

結(jié)合上文給出下面的代碼。

用一個(gè)枚舉類(lèi)Color表示顏色:

public enum Color {
    Black("黑色"), Red("紅色");

    private String color;

    private Color(String color) {
        this.color = color;
    }

    @Override
    public String toString() {
        return color;
    }
}

類(lèi)Node表示節(jié)點(diǎn):

public class Node {
    public int key;
    public Color color;
    public Node left;
    public Node right;
    public Node parent;

    public Node() {
    }

    public Node(Color color) {
        this.color = color;
    }

    public Node(int key) {
        this.key = key;
        this.color = Color.Red;
    }

    public int height() {
        return Math.max(left != RedBlackTree.NULL ? left.height() : 0, right != RedBlackTree.NULL ? right.height() : 0) + 1;
    }

    public Node minimum() {
        Node pointer = this;
        while (pointer.left != RedBlackTree.NULL)
            pointer = pointer.left;
        return pointer;
    }

    @Override
    public String toString() {
        String position = "null";
        if (this.parent != RedBlackTree.NULL)
            position = this.parent.left == this ? "left" : "right";
        return "[key: " + key + ", color: " + color + ", parent: " + parent.key + ", position: " + position + "]";
    }
}

類(lèi)RedTreeNode表示紅黑樹(shù):

public class RedBlackTree {

    // 表示哨兵變量
    public final static Node NULL = new Node(Color.Black);

    public Node root;

    public RedBlackTree() {
        this.root = NULL;
    }

}

2、旋轉(zhuǎn)

紅黑樹(shù)的插入和刪除操作,能改變紅黑樹(shù)的結(jié)構(gòu),可能會(huì)使它不再有前面所說(shuō)的某些特性性。為了維持這些特性,我們需要改變樹(shù)中某些節(jié)點(diǎn)的顏色和位置。

我們可以通過(guò)旋轉(zhuǎn)改變節(jié)點(diǎn)的結(jié)構(gòu)。主要有 左旋轉(zhuǎn) 右旋轉(zhuǎn) 兩種方式。具體如下圖所示。

左旋轉(zhuǎn):把一個(gè)節(jié)點(diǎn)n的右子節(jié)點(diǎn)right變?yōu)樗母腹?jié)點(diǎn),n變?yōu)閞ight的左子節(jié)點(diǎn),所以right不能為null。這時(shí)n的右指針空了出來(lái),right的左子樹(shù)被n擠掉,所以right原來(lái)的左子樹(shù)稱(chēng)為n的右子樹(shù)。

右旋轉(zhuǎn):把一個(gè)節(jié)點(diǎn)n的左子節(jié)點(diǎn)left變?yōu)樗母腹?jié)點(diǎn),n變?yōu)閘eft的右子節(jié)點(diǎn),所以left不能為null。這時(shí)n的左指針被空了出來(lái),left的右子樹(shù)被n擠掉,所以left原來(lái)的右子樹(shù)被稱(chēng)為n的左子樹(shù)。

可在RedTreeNode類(lèi)中,加上如下實(shí)現(xiàn)代碼:

public void leftRotate(Node node) {
        Node rightNode = node.right;

        node.right = rightNode.left;
        if (rightNode.left != RedBlackTree.NULL)
            rightNode.left.parent = node;

        rightNode.parent = node.parent;
        if (node.parent == RedBlackTree.NULL)
            this.root = rightNode;
        else if (node.parent.left == node)
            node.parent.left = rightNode;
        else
            node.parent.right = rightNode;

        rightNode.left = node;
        node.parent = rightNode;
    }

    public void rightRotate(Node node) {
        Node leftNode = node.left;

        node.left = leftNode.right;
        if (leftNode.right != RedBlackTree.NULL)
            leftNode.right.parent = node;

        leftNode.parent = node.parent;
        if (node.parent == RedBlackTree.NULL) {
            this.root = leftNode;
        } else if (node.parent.left == node) {
            node.parent.left = leftNode;
        } else {
            node.parent.right = leftNode;
        }

        leftNode.right = node;
        node.parent = leftNode;
    }

3、插入

紅黑樹(shù)的插入代碼與二分查找樹(shù)的插入代碼非常相似。只不過(guò)紅黑樹(shù)的插入操作會(huì)改變紅黑樹(shù)的結(jié)構(gòu),使其不在有該有的特性。

在這里,新插入的節(jié)點(diǎn)默認(rèn)是紅色。

所以在插入節(jié)點(diǎn)之后,要有維護(hù)紅黑樹(shù)特性的代碼。

public void insert(Node node) {
        Node parentPointer = RedBlackTree.NULL;
        Node pointer = this.root;

        while (this.root != RedBlackTree.NULL) {
            parentPointer = pointer;
            pointer = node.key < pointer.key ? pointer.left : pointer.right;
        }

        node.parent = parentPointer;
        if(parentPointer == RedBlackTree.NULL) {
            this.root = node;
        }else if(node.key < parentPointer.key) {
            parentPointer.left = node;
        }else {
            parentPointer.right = node;
        }

        node.left = RedBlackTree.NULL;
        node.right = RedBlackTree.NULL;
        node.color = Color.Red;
        // 維護(hù)紅黑樹(shù)屬性的方法
        this.insertFixUp(node);
    }

用上述方法插入一個(gè)新節(jié)點(diǎn)的時(shí)候,有兩類(lèi)情況會(huì)違反紅黑樹(shù)的特性。

  • 當(dāng)樹(shù)中沒(méi)有節(jié)點(diǎn)時(shí),此時(shí)插入的節(jié)點(diǎn)稱(chēng)為根節(jié)點(diǎn),而此節(jié)點(diǎn)的顏色為紅色。
  • 當(dāng)新插入的節(jié)點(diǎn)成為一個(gè)紅色節(jié)點(diǎn)的子節(jié)點(diǎn)時(shí),此時(shí)存在一個(gè)紅色結(jié)點(diǎn)有紅色子節(jié)點(diǎn)的情況。

對(duì)于第一類(lèi)情況,可以直接把根結(jié)點(diǎn)設(shè)置為黑色;而針對(duì)第二類(lèi)情況,需要根據(jù)具體條件,做出相應(yīng)的解決方案。

具體代碼如下:

public void insertFixUp(Node node) {
        // 當(dāng)node不是根結(jié)點(diǎn),且node的父節(jié)點(diǎn)顏色為紅色
        while (node.parent.color == Color.Red) {
            // 先判斷node的父節(jié)點(diǎn)是左子節(jié)點(diǎn),還是右子節(jié)點(diǎn),這不同的情況,解決方案也會(huì)不同
            if (node.parent == node.parent.parent.left) {
                Node uncleNode = node.parent.parent.right;
                if (uncleNode.color == Color.Red) {  // 如果叔叔節(jié)點(diǎn)是紅色,則父父一定是黑色
                    // 通過(guò)把父父節(jié)點(diǎn)變成紅色,父節(jié)點(diǎn)和兄弟節(jié)點(diǎn)變成黑色,然后在判斷父父節(jié)點(diǎn)的顏色是否合適
                    uncleNode.color = Color.Black;
                    node.parent.color = Color.Black;
                    node.parent.parent.color = Color.Red;
                    node = node.parent.parent;
                } else if (node == node.parent.right) {
                    node = node.parent;
                    this.leftRotate(node);
                } else {
                    node.parent.color = Color.Black;
                    node.parent.parent.color = Color.Red;
                    this.rightRotate(node.parent.parent);
                }
            } else {
                Node uncleNode = node.parent.parent.left;
                if (uncleNode.color == Color.Red) {
                    uncleNode.color = Color.Black;
                    node.parent.color = Color.Black;
                    node.parent.parent.color = Color.Red;
                    node = node.parent.parent;
                } else if (node == node.parent.left) {
                    node = node.parent;
                    this.rightRotate(node);
                } else {
                    node.parent.color = Color.Black;
                    node.parent.parent.color = Color.Red;
                    this.leftRotate(node.parent.parent);
                }
            }
        }
        // 如果之前樹(shù)中沒(méi)有節(jié)點(diǎn),那么新加入的點(diǎn)就成了新結(jié)點(diǎn),而新插入的結(jié)點(diǎn)都是紅色的,所以需要修改。
        this.root.color = Color.Black;
    }

下面的圖分別對(duì)應(yīng)第二類(lèi)情況中的六種及相應(yīng)處理結(jié)果。

情況1:

情況2:

情況3:

情況4:

情況5:

情況6:

4、刪除

紅黑樹(shù)中節(jié)點(diǎn)的刪除會(huì)使一個(gè)結(jié)點(diǎn)代替另外一個(gè)節(jié)點(diǎn)。所以先要實(shí)現(xiàn)這樣的代碼:

public void transplant(Node n1, Node n2) {
        if(n1.parent == RedBlackTree.NULL){
            this.root = n2;
        }else if(n1.parent.left == n1) {
            n1.parent.left = n2;
        }else {
            n1.parent.right = n2;
        }
        n2.parent = n1.parent;
    }


紅黑樹(shù)的刪除節(jié)點(diǎn)代碼是基于二分查找樹(shù)的刪除節(jié)點(diǎn)代碼而寫(xiě)的。

刪除結(jié)點(diǎn)代碼:

public void delete(Node node) {
        Node pointer1 = node;
        // 用于記錄被刪除的顏色,如果是紅色,可以不用管,但如果是黑色,可能會(huì)破壞紅黑樹(shù)的屬性
        Color pointerOriginColor = pointer1.color;
        // 用于記錄問(wèn)題的出現(xiàn)點(diǎn)
        Node pointer2;
        if (node.left == RedBlackTree.NULL) {
            pointer2 = node.right;
            this.transplant(node, node.right);
        } else if (node.right == RedBlackTree.NULL) {
            pointer2 = node.left;
            this.transplant(node, node.left);
        } else {
            // 如要?jiǎng)h除的字節(jié)有兩個(gè)子節(jié)點(diǎn),則找到其直接后繼(右子樹(shù)最小值),直接后繼節(jié)點(diǎn)沒(méi)有非空左子節(jié)點(diǎn)。
            pointer1 = node.right.minimum();
            // 記錄直接后繼的顏色和其右子節(jié)點(diǎn)
            pointerOriginColor = pointer1.color;
            pointer2 = pointer1.right;
            // 如果其直接后繼是node的右子節(jié)點(diǎn),不用進(jìn)行處理
            if (pointer1.parent == node) {
                pointer2.parent = pointer1;
            } else {
                // 否則,先把直接后繼從樹(shù)中提取出來(lái),用來(lái)替換node
                this.transplant(pointer1, pointer1.right);
                pointer1.right = node.right;
                pointer1.right.parent = pointer1;
            }
            // 用node的直接后繼替換node,繼承node的顏色
            this.transplant(node, pointer1);
            pointer1.left = node.left;
            pointer1.left.parent = pointer1;
            pointer1.color = node.color;
        }
        if (pointerOriginColor == Color.Black) {
            this.deleteFixUp(pointer2);
        }
    }

當(dāng)被刪除節(jié)點(diǎn)的顏色是黑色時(shí)需要調(diào)用方法維護(hù)紅黑樹(shù)的特性。

主要有兩類(lèi)情況:

  • 當(dāng)node是紅色時(shí),直接變成黑色即可。
  • 當(dāng)node是黑色時(shí),需要調(diào)整紅黑樹(shù)結(jié)構(gòu)。,
private void deleteFixUp(Node node) {
        // 如果node不是根節(jié)點(diǎn),且是黑色
        while (node != this.root && node.color == Color.Black) {
            // 如果node是其父節(jié)點(diǎn)的左子節(jié)點(diǎn)
            if (node == node.parent.left) {
                // 記錄node的兄弟節(jié)點(diǎn)
                Node pointer1 = node.parent.right;
                // 如果他兄弟節(jié)點(diǎn)是紅色
                if (pointer1.color == Color.Red) {
                    pointer1.color = Color.Black;
                    node.parent.color = Color.Red;
                    leftRotate(node.parent);
                    pointer1 = node.parent.right;
                }
                if (pointer1.left.color == Color.Black && pointer1.right.color == Color.Black) {
                    pointer1.color = Color.Red;
                    node = node.parent;
                } else if (pointer1.right.color == Color.Black) {
                    pointer1.left.color = Color.Black;
                    pointer1.color = Color.Red;
                    rightRotate(pointer1);
                    pointer1 = node.parent.right;
                } else {
                    pointer1.color = node.parent.color;
                    node.parent.color = Color.Black;
                    pointer1.right.color = Color.Black;
                    leftRotate(node.parent);
                    node = this.root;
                }
            } else {
                // 記錄node的兄弟節(jié)點(diǎn)
                Node pointer1 = node.parent.left;
                // 如果他兄弟節(jié)點(diǎn)是紅色
                if (pointer1.color == Color.Red) {
                    pointer1.color = Color.Black;
                    node.parent.color = Color.Red;
                    rightRotate(node.parent);
                    pointer1 = node.parent.left;
                }
                if (pointer1.right.color == Color.Black && pointer1.left.color == Color.Black) {
                    pointer1.color = Color.Red;
                    node = node.parent;
                } else if (pointer1.left.color == Color.Black) {
                    pointer1.right.color = Color.Black;
                    pointer1.color = Color.Red;
                    leftRotate(pointer1);
                    pointer1 = node.parent.left;
                } else {
                    pointer1.color = node.parent.color;
                    node.parent.color = Color.Black;
                    pointer1.left.color = Color.Black;
                    rightRotate(node.parent);
                    node = this.root;
                }
            }

        }
        node.color = Color.Black;
    }

對(duì)第二類(lèi)情況,有下面8種:

情況1:

情況2:

情況3:

情況4:

情況5:

情況6:

情況7:

情況8:

5、所有代碼

public enum Color {
    Black("黑色"), Red("紅色");

    private String color;

    private Color(String color) {
        this.color = color;
    }

    @Override
    public String toString() {
        return color;
    }
}
public class Node {
    public int key;
    public Color color;
    public Node left;
    public Node right;
    public Node parent;

    public Node() {
    }

    public Node(Color color) {
        this.color = color;
    }

    public Node(int key) {
        this.key = key;
        this.color = Color.Red;
    }

    /**
     * 求在樹(shù)中節(jié)點(diǎn)的高度
     * 
     * @return
     */
    public int height() {
        return Math.max(left != RedBlackTree.NULL ? left.height() : 0, right != RedBlackTree.NULL ? right.height() : 0) + 1;
    }

    /**
     * 在以該節(jié)點(diǎn)為根節(jié)點(diǎn)的樹(shù)中,求最小節(jié)點(diǎn)
     * 
     * @return
     */
    public Node minimum() {
        Node pointer = this;
        while (pointer.left != RedBlackTree.NULL)
            pointer = pointer.left;
        return pointer;
    }

    @Override
    public String toString() {
        String position = "null";
        if (this.parent != RedBlackTree.NULL)
            position = this.parent.left == this ? "left" : "right";
        return "[key: " + key + ", color: " + color + ", parent: " + parent.key + ", position: " + position + "]";
    }
}
import java.util.LinkedList;
import java.util.Queue;

public class RedBlackTree {

    public final static Node NULL = new Node(Color.Black);

    public Node root;

    public RedBlackTree() {
        this.root = NULL;
    }

    /**
     * 左旋轉(zhuǎn)
     * 
     * @param node
     */
    public void leftRotate(Node node) {
        Node rightNode = node.right;

        node.right = rightNode.left;
        if (rightNode.left != RedBlackTree.NULL)
            rightNode.left.parent = node;

        rightNode.parent = node.parent;
        if (node.parent == RedBlackTree.NULL)
            this.root = rightNode;
        else if (node.parent.left == node)
            node.parent.left = rightNode;
        else
            node.parent.right = rightNode;

        rightNode.left = node;
        node.parent = rightNode;
    }

    /**
     * 右旋轉(zhuǎn)
     * 
     * @param node
     */
    public void rightRotate(Node node) {
        Node leftNode = node.left;

        node.left = leftNode.right;
        if (leftNode.right != RedBlackTree.NULL)
            leftNode.right.parent = node;

        leftNode.parent = node.parent;
        if (node.parent == RedBlackTree.NULL) {
            this.root = leftNode;
        } else if (node.parent.left == node) {
            node.parent.left = leftNode;
        } else {
            node.parent.right = leftNode;
        }

        leftNode.right = node;
        node.parent = leftNode;
    }

    public void insert(Node node) {
        Node parentPointer = RedBlackTree.NULL;
        Node pointer = this.root;

        while (pointer != RedBlackTree.NULL) {
            parentPointer = pointer;
            pointer = node.key < pointer.key ? pointer.left : pointer.right;
        }

        node.parent = parentPointer;
        if (parentPointer == RedBlackTree.NULL) {
            this.root = node;
        } else if (node.key < parentPointer.key) {
            parentPointer.left = node;
        } else {
            parentPointer.right = node;
        }

        node.left = RedBlackTree.NULL;
        node.right = RedBlackTree.NULL;
        node.color = Color.Red;
        this.insertFixUp(node);
    }

    private void insertFixUp(Node node) {
        // 當(dāng)node不是根結(jié)點(diǎn),且node的父節(jié)點(diǎn)顏色為紅色
        while (node.parent.color == Color.Red) {
            // 先判斷node的父節(jié)點(diǎn)是左子節(jié)點(diǎn),還是右子節(jié)點(diǎn),這不同的情況,解決方案也會(huì)不同
            if (node.parent == node.parent.parent.left) {
                Node uncleNode = node.parent.parent.right;
                if (uncleNode.color == Color.Red) { // 如果叔叔節(jié)點(diǎn)是紅色,則父父一定是黑色
                    // 通過(guò)把父父節(jié)點(diǎn)變成紅色,父節(jié)點(diǎn)和兄弟節(jié)點(diǎn)變成黑色,然后在判斷父父節(jié)點(diǎn)的顏色是否合適
                    uncleNode.color = Color.Black;
                    node.parent.color = Color.Black;
                    node.parent.parent.color = Color.Red;
                    node = node.parent.parent;
                } else if (node == node.parent.right) { // node是其父節(jié)點(diǎn)的右子節(jié)點(diǎn),且叔叔節(jié)點(diǎn)是黑色
                    // 對(duì)node的父節(jié)點(diǎn)進(jìn)行左旋轉(zhuǎn)
                    node = node.parent;
                    this.leftRotate(node);
                } else { // node如果叔叔節(jié)點(diǎn)是黑色,node是其父節(jié)點(diǎn)的左子節(jié)點(diǎn),父父節(jié)點(diǎn)是黑色
                    // 把父節(jié)點(diǎn)變成黑色,父父節(jié)點(diǎn)變成紅色,對(duì)父父節(jié)點(diǎn)進(jìn)行右旋轉(zhuǎn)
                    node.parent.color = Color.Black;
                    node.parent.parent.color = Color.Red;
                    this.rightRotate(node.parent.parent);
                }
            } else {
                Node uncleNode = node.parent.parent.left;
                if (uncleNode.color == Color.Red) {
                    uncleNode.color = Color.Black;
                    node.parent.color = Color.Black;
                    node.parent.parent.color = Color.Red;
                    node = node.parent.parent;
                } else if (node == node.parent.left) {
                    node = node.parent;
                    this.rightRotate(node);
                } else {
                    node.parent.color = Color.Black;
                    node.parent.parent.color = Color.Red;
                    this.leftRotate(node.parent.parent);
                }
            }
        }
        // 如果之前樹(shù)中沒(méi)有節(jié)點(diǎn),那么新加入的點(diǎn)就成了新結(jié)點(diǎn),而新插入的結(jié)點(diǎn)都是紅色的,所以需要修改。
        this.root.color = Color.Black;
    }

    /**
     * n2替代n1
     * 
     * @param n1
     * @param n2
     */
    private void transplant(Node n1, Node n2) {

        if (n1.parent == RedBlackTree.NULL) { // 如果n1是根節(jié)點(diǎn)
            this.root = n2;
        } else if (n1.parent.left == n1) { // 如果n1是其父節(jié)點(diǎn)的左子節(jié)點(diǎn)
            n1.parent.left = n2;
        } else { // 如果n1是其父節(jié)點(diǎn)的右子節(jié)點(diǎn)
            n1.parent.right = n2;
        }
        n2.parent = n1.parent;
    }

    /**
     * 刪除節(jié)點(diǎn)node
     * 
     * @param node
     */
    public void delete(Node node) {
        Node pointer1 = node;
        // 用于記錄被刪除的顏色,如果是紅色,可以不用管,但如果是黑色,可能會(huì)破壞紅黑樹(shù)的屬性
        Color pointerOriginColor = pointer1.color;
        // 用于記錄問(wèn)題的出現(xiàn)點(diǎn)
        Node pointer2;
        if (node.left == RedBlackTree.NULL) {
            pointer2 = node.right;
            this.transplant(node, node.right);
        } else if (node.right == RedBlackTree.NULL) {
            pointer2 = node.left;
            this.transplant(node, node.left);
        } else {
            // 如要?jiǎng)h除的字節(jié)有兩個(gè)子節(jié)點(diǎn),則找到其直接后繼(右子樹(shù)最小值),直接后繼節(jié)點(diǎn)沒(méi)有非空左子節(jié)點(diǎn)。
            pointer1 = node.right.minimum();
            // 記錄直接后繼的顏色和其右子節(jié)點(diǎn)
            pointerOriginColor = pointer1.color;
            pointer2 = pointer1.right;
            // 如果其直接后繼是node的右子節(jié)點(diǎn),不用進(jìn)行處理
            if (pointer1.parent == node) {
                pointer2.parent = pointer1;
            } else {
                // 否則,先把直接后繼從樹(shù)中提取出來(lái),用來(lái)替換node
                this.transplant(pointer1, pointer1.right);
                pointer1.right = node.right;
                pointer1.right.parent = pointer1;
            }
            // 用node的直接后繼替換node,繼承node的顏色
            this.transplant(node, pointer1);
            pointer1.left = node.left;
            pointer1.left.parent = pointer1;
            pointer1.color = node.color;
        }
        if (pointerOriginColor == Color.Black) {
            this.deleteFixUp(pointer2);
        }
    }

    /**
     * The procedure RB-DELETE-FIXUP restores properties 1, 2, and 4
     * 
     * @param node
     */
    private void deleteFixUp(Node node) {
        // 如果node不是根節(jié)點(diǎn),且是黑色
        while (node != this.root && node.color == Color.Black) {
            // 如果node是其父節(jié)點(diǎn)的左子節(jié)點(diǎn)
            if (node == node.parent.left) {
                // 記錄node的兄弟節(jié)點(diǎn)
                Node pointer1 = node.parent.right;
                // 如果node兄弟節(jié)點(diǎn)是紅色
                if (pointer1.color == Color.Red) {
                    pointer1.color = Color.Black;
                    node.parent.color = Color.Red;
                    leftRotate(node.parent);
                    pointer1 = node.parent.right;
                }
                if (pointer1.left.color == Color.Black && pointer1.right.color == Color.Black) {
                    pointer1.color = Color.Red;
                    node = node.parent;
                } else if (pointer1.right.color == Color.Black) {
                    pointer1.left.color = Color.Black;
                    pointer1.color = Color.Red;
                    rightRotate(pointer1);
                    pointer1 = node.parent.right;
                } else {
                    pointer1.color = node.parent.color;
                    node.parent.color = Color.Black;
                    pointer1.right.color = Color.Black;
                    leftRotate(node.parent);
                    node = this.root;
                }
            } else {
                // 記錄node的兄弟節(jié)點(diǎn)
                Node pointer1 = node.parent.left;
                // 如果他兄弟節(jié)點(diǎn)是紅色
                if (pointer1.color == Color.Red) {
                    pointer1.color = Color.Black;
                    node.parent.color = Color.Red;
                    rightRotate(node.parent);
                    pointer1 = node.parent.left;
                }
                if (pointer1.right.color == Color.Black && pointer1.left.color == Color.Black) {
                    pointer1.color = Color.Red;
                    node = node.parent;
                } else if (pointer1.left.color == Color.Black) {
                    pointer1.right.color = Color.Black;
                    pointer1.color = Color.Red;
                    leftRotate(pointer1);
                    pointer1 = node.parent.left;
                } else {
                    pointer1.color = node.parent.color;
                    node.parent.color = Color.Black;
                    pointer1.left.color = Color.Black;
                    rightRotate(node.parent);
                    node = this.root;
                }
            }

        }
        node.color = Color.Black;
    }

    private void innerWalk(Node node) {
        if (node != NULL) {
            innerWalk(node.left);
            System.out.println(node);
            innerWalk(node.right);
        }
    }

    /**
     * 中序遍歷
     */
    public void innerWalk() {
        this.innerWalk(this.root);
    }

    /**
     * 層次遍歷
     */
    public void print() {
        Queue<Node> queue = new LinkedList<>();
        queue.add(this.root);
        while (!queue.isEmpty()) {
            Node temp = queue.poll();
            System.out.println(temp);
            if (temp.left != NULL)
                queue.add(temp.left);
            if (temp.right != NULL)
                queue.add(temp.right);
        }
    }

    // 查找
    public Node search(int key) {
        Node pointer = this.root;
        while (pointer != NULL && pointer.key != key) {
            pointer = pointer.key < key ? pointer.right : pointer.left;
        }
        return pointer;
    }

}

6、演示

演示代碼:

public class Test01 {
  public static void main(String[] args) {
    int[] arr = { 1, 2, 3, 4, 5, 6, 7, 8 };
    RedBlackTree redBlackTree = new RedBlackTree();
    for (int i = 0; i < arr.length; i++) {
      redBlackTree.insert(new Node(arr[i]));
    }
    System.out.println("樹(shù)的高度: " + redBlackTree.root.height());
    System.out.println("左子樹(shù)的高度: " + redBlackTree.root.left.height());
    System.out.println("右子樹(shù)的高度: " + redBlackTree.root.right.height());
    System.out.println("層次遍歷");
    redBlackTree.print();
    // 要?jiǎng)h除節(jié)點(diǎn)
    Node node = redBlackTree.search(4);
    redBlackTree.delete(node);
    System.out.println("樹(shù)的高度: " + redBlackTree.root.height());
    System.out.println("左子樹(shù)的高度: " + redBlackTree.root.left.height());
    System.out.println("右子樹(shù)的高度: " + redBlackTree.root.right.height());
    System.out.println("層次遍歷");
    redBlackTree.print();
  }
}

到此這篇關(guān)于利用Java實(shí)現(xiàn)紅黑樹(shù)的文章就介紹到這了,更多相關(guān)Java實(shí)現(xiàn)紅黑樹(shù)內(nèi)容請(qǐng)搜索腳本之家以前的文章或繼續(xù)瀏覽下面的相關(guān)文章希望大家以后多多支持腳本之家!

相關(guān)文章

最新評(píng)論