Python3實現(xiàn)打格點算法的GPU加速實例詳解
技術(shù)背景
在數(shù)學和物理學領域,總是充滿了各種連續(xù)的函數(shù)模型。而當我們用現(xiàn)代計算機的技術(shù)去處理這些問題的時候,事實上是無法直接處理連續(xù)模型的,絕大多數(shù)的情況下都要轉(zhuǎn)化成一個離散的模型再進行數(shù)值的計算。比如計算數(shù)值的積分,計算數(shù)值的二階導數(shù)(海森矩陣)等等。這里我們所介紹的打格點的算法,正是一種典型的離散化方法。這個對空間做離散化的方法,可以在很大程度上簡化運算量。比如在分子動力學模擬中,計算近鄰表的時候,如果不采用打格點的方法,那么就要針對整個空間所有的原子進行搜索,計算出來距離再判斷是否近鄰。而如果采用打格點的方法,我們只需要先遍歷一遍原子對齊進行打格點的離散化,之后再計算近鄰表的時候,只需要計算三維空間下鄰近的27個格子中的原子是否滿足近鄰條件即可。在這篇文章中,我們主要探討如何用GPU來實現(xiàn)打格點的算法。
打格點算法實現(xiàn)
我們先來用一個例子說明一下什么叫打格點。對于一個給定所有原子坐標的系統(tǒng),也就是已知了[x,y,z],我們需要得到的是這些原子所在的對應的格子位置[nx,ny,nz]。我們先看一下在CPU上的實現(xiàn)方案,是一個遍歷一次的算法:
# cuda_grid.py from numba import jit from numba import cuda import numpy as np def grid_by_cpu(crd, rxyz, atoms, grids): """Transform coordinates [x,y,z] into grids [nx,ny,nz]. Args: crd(list): The 3-D coordinates of atoms. rxyz(list): The list includes xmin,ymin,zmin,grid_num. atoms(int): The total number of atoms. grids(list): The transformed grids matrix. """ for i in range(atoms): grids[i][0] = int((crd[i][0]-rxyz[0])/rxyz[3]) grids[i][1] = int((crd[i][1]-rxyz[1])/rxyz[3]) grids[i][2] = int((crd[i][2]-rxyz[2])/rxyz[3]) return grids if __name__=='__main__': np.random.seed(1) atoms = 4 grid_size = 0.1 crd = np.random.random((atoms,3)).astype(np.float32) xmin = min(crd[:,0]) ymin = min(crd[:,1]) zmin = min(crd[:,2]) xmax = max(crd[:,0]) ymax = max(crd[:,1]) zmax = max(crd[:,2]) xgrids = int((xmax-xmin)/grid_size)+1 ygrids = int((ymax-ymin)/grid_size)+1 zgrids = int((zmax-zmin)/grid_size)+1 rxyz = np.array([xmin,ymin,zmin,grid_size], dtype=np.float32) grids = np.ones_like(crd)*(-1) grids = grids.astype(np.float32) grids_cpu = grid_by_cpu(crd, rxyz, atoms, grids) print (crd) print (grids_cpu) import matplotlib.pyplot as plt plt.figure() plt.plot(crd[:,0], crd[:,1], 'o', color='red') for grid in range(ygrids+1): plt.plot([xmin,xmin+grid_size*xgrids], [ymin+grid_size*grid,ymin+grid_size*grid], color='black') for grid in range(xgrids+1): plt.plot([xmin+grid_size*grid,xmin+grid_size*grid], [ymin,ymin+grid_size*ygrids], color='black') plt.savefig('Atom_Grids.png')
輸出結(jié)果如下,
$ python3 cuda_grid.py
[[4.17021990e-01 7.20324516e-01 1.14374816e-04]
[3.02332580e-01 1.46755889e-01 9.23385918e-02]
[1.86260208e-01 3.45560730e-01 3.96767467e-01]
[5.38816750e-01 4.19194520e-01 6.85219526e-01]]
[[2. 5. 0.]
[1. 0. 0.]
[0. 1. 3.]
[3. 2. 6.]]
上面兩個打印輸出就分別對應于[x,y,z]和[nx,ny,nz],比如第一個原子被放到了編號為[2,5,0]的格點。那么為了方便理解打格點的方法,我們把這個三維空間的原子系統(tǒng)和打格點以后的標號取前兩個維度來可視化一下結(jié)果,作圖以后效果如下:
我們可以看到,這些紅色的點就是原子所處的位置,而黑色的網(wǎng)格線就是我們所標記的格點。在原子數(shù)量比較多的時候,有可能出現(xiàn)在一個網(wǎng)格中存在很多個原子的情況,所以如何打格點,格點大小如何去定義,這都是不同場景下的經(jīng)驗參數(shù),需要大家一起去摸索。
打格點算法加速
在上面這個算法實現(xiàn)中,我們主要是用到了一個for循環(huán),這時候我們可以想到numba所支持的向量化運算,還有GPU硬件加速,這里我們先對比一下三種實現(xiàn)方案的計算結(jié)果:
# cuda_grid.py from numba import jit from numba import cuda import numpy as np def grid_by_cpu(crd, rxyz, atoms, grids): """Transform coordinates [x,y,z] into grids [nx,ny,nz]. Args: crd(list): The 3-D coordinates of atoms. rxyz(list): The list includes xmin,ymin,zmin,grid_num. atoms(int): The total number of atoms. grids(list): The transformed grids matrix. """ for i in range(atoms): grids[i][0] = int((crd[i][0]-rxyz[0])/rxyz[3]) grids[i][1] = int((crd[i][1]-rxyz[1])/rxyz[3]) grids[i][2] = int((crd[i][2]-rxyz[2])/rxyz[3]) return grids @jit def grid_by_jit(crd, rxyz, atoms, grids): """Transform coordinates [x,y,z] into grids [nx,ny,nz]. Args: crd(list): The 3-D coordinates of atoms. rxyz(list): The list includes xmin,ymin,zmin,grid_num. atoms(int): The total number of atoms. grids(list): The transformed grids matrix. """ for i in range(atoms): grids[i][0] = int((crd[i][0]-rxyz[0])/rxyz[3]) grids[i][1] = int((crd[i][1]-rxyz[1])/rxyz[3]) grids[i][2] = int((crd[i][2]-rxyz[2])/rxyz[3]) return grids @cuda.jit def grid_by_gpu(crd, rxyz, grids): """Transform coordinates [x,y,z] into grids [nx,ny,nz]. Args: crd(list): The 3-D coordinates of atoms. rxyz(list): The list includes xmin,ymin,zmin,grid_num. atoms(int): The total number of atoms. grids(list): The transformed grids matrix. """ i,j = cuda.grid(2) grids[i][j] = int((crd[i][j]-rxyz[j])/rxyz[3]) if __name__=='__main__': np.random.seed(1) atoms = 4 grid_size = 0.1 crd = np.random.random((atoms,3)).astype(np.float32) xmin = min(crd[:,0]) ymin = min(crd[:,1]) zmin = min(crd[:,2]) xmax = max(crd[:,0]) ymax = max(crd[:,1]) zmax = max(crd[:,2]) xgrids = int((xmax-xmin)/grid_size)+1 ygrids = int((ymax-ymin)/grid_size)+1 zgrids = int((zmax-zmin)/grid_size)+1 rxyz = np.array([xmin,ymin,zmin,grid_size], dtype=np.float32) crd_cuda = cuda.to_device(crd) rxyz_cuda = cuda.to_device(rxyz) grids = np.ones_like(crd)*(-1) grids = grids.astype(np.float32) grids_cpu = grid_by_cpu(crd, rxyz, atoms, grids) grids = np.ones_like(crd)*(-1) grids_jit = grid_by_jit(crd, rxyz, atoms, grids) grids = np.ones_like(crd)*(-1) grids_cuda = cuda.to_device(grids) grid_by_gpu[(atoms,3),(1,1)](crd_cuda, rxyz_cuda, grids_cuda) print (crd) print (grids_cpu) print (grids_jit) print (grids_cuda.copy_to_host())
輸出結(jié)果如下:
$ python3 cuda_grid.py
/home/dechin/anaconda3/lib/python3.8/site-packages/numba/cuda/compiler.py:865: NumbaPerformanceWarning: Grid size (12) < 2 * SM count (72) will likely result in GPU under utilization due to low occupancy.
warn(NumbaPerformanceWarning(msg))
[[4.17021990e-01 7.20324516e-01 1.14374816e-04]
[3.02332580e-01 1.46755889e-01 9.23385918e-02]
[1.86260208e-01 3.45560730e-01 3.96767467e-01]
[5.38816750e-01 4.19194520e-01 6.85219526e-01]]
[[2. 5. 0.]
[1. 0. 0.]
[0. 1. 3.]
[3. 2. 6.]]
[[2. 5. 0.]
[1. 0. 0.]
[0. 1. 3.]
[3. 2. 6.]]
[[2. 5. 0.]
[1. 0. 0.]
[0. 1. 3.]
[3. 2. 6.]]
我們先看到這里面的告警信息,因為GPU硬件加速要在一定密度的運算量之上才能夠有比較明顯的加速效果。比如說我們只是計算兩個數(shù)字的加和,那么是完全沒有必要使用到GPU的。但是如果我們要計算兩個非常大的數(shù)組的加和,那么這個時候GPU就能夠發(fā)揮出非常大的價值。因為這里我們的案例中只有4個原子,因此提示我們這時候是體現(xiàn)不出來GPU的加速效果的。我們僅僅關注下這里的運算結(jié)果,在不同體系下得到的格點結(jié)果是一致的,那么接下來就可以對比一下幾種不同實現(xiàn)方式的速度差異。
# cuda_grid.py from numba import jit from numba import cuda import numpy as np def grid_by_cpu(crd, rxyz, atoms, grids): """Transform coordinates [x,y,z] into grids [nx,ny,nz]. Args: crd(list): The 3-D coordinates of atoms. rxyz(list): The list includes xmin,ymin,zmin,grid_num. atoms(int): The total number of atoms. grids(list): The transformed grids matrix. """ for i in range(atoms): grids[i][0] = int((crd[i][0]-rxyz[0])/rxyz[3]) grids[i][1] = int((crd[i][1]-rxyz[1])/rxyz[3]) grids[i][2] = int((crd[i][2]-rxyz[2])/rxyz[3]) return grids @jit def grid_by_jit(crd, rxyz, atoms, grids): """Transform coordinates [x,y,z] into grids [nx,ny,nz]. Args: crd(list): The 3-D coordinates of atoms. rxyz(list): The list includes xmin,ymin,zmin,grid_num. atoms(int): The total number of atoms. grids(list): The transformed grids matrix. """ for i in range(atoms): grids[i][0] = int((crd[i][0]-rxyz[0])/rxyz[3]) grids[i][1] = int((crd[i][1]-rxyz[1])/rxyz[3]) grids[i][2] = int((crd[i][2]-rxyz[2])/rxyz[3]) return grids @cuda.jit def grid_by_gpu(crd, rxyz, grids): """Transform coordinates [x,y,z] into grids [nx,ny,nz]. Args: crd(list): The 3-D coordinates of atoms. rxyz(list): The list includes xmin,ymin,zmin,grid_num. atoms(int): The total number of atoms. grids(list): The transformed grids matrix. """ i,j = cuda.grid(2) grids[i][j] = int((crd[i][j]-rxyz[j])/rxyz[3]) if __name__=='__main__': import time from tqdm import trange np.random.seed(1) atoms = 100000 grid_size = 0.1 crd = np.random.random((atoms,3)).astype(np.float32) xmin = min(crd[:,0]) ymin = min(crd[:,1]) zmin = min(crd[:,2]) xmax = max(crd[:,0]) ymax = max(crd[:,1]) zmax = max(crd[:,2]) xgrids = int((xmax-xmin)/grid_size)+1 ygrids = int((ymax-ymin)/grid_size)+1 zgrids = int((zmax-zmin)/grid_size)+1 rxyz = np.array([xmin,ymin,zmin,grid_size], dtype=np.float32) crd_cuda = cuda.to_device(crd) rxyz_cuda = cuda.to_device(rxyz) cpu_time = 0 jit_time = 0 gpu_time = 0 for i in trange(100): grids = np.ones_like(crd)*(-1) grids = grids.astype(np.float32) time0 = time.time() grids_cpu = grid_by_cpu(crd, rxyz, atoms, grids) time1 = time.time() grids = np.ones_like(crd)*(-1) time2 = time.time() grids_jit = grid_by_jit(crd, rxyz, atoms, grids) time3 = time.time() grids = np.ones_like(crd)*(-1) grids_cuda = cuda.to_device(grids) time4 = time.time() grid_by_gpu[(atoms,3),(1,1)](crd_cuda, rxyz_cuda, grids_cuda) time5 = time.time() if i != 0: cpu_time += time1 - time0 jit_time += time3 - time2 gpu_time += time5 - time4 print ('The time cost of CPU calculation is: {}s'.format(cpu_time)) print ('The time cost of JIT calculation is: {}s'.format(jit_time)) print ('The time cost of GPU calculation is: {}s'.format(gpu_time))
輸出結(jié)果如下:
$ python3 cuda_grid.py
100%|███████████████████████████| 100/100 [00:23<00:00, 4.18it/s]
The time cost of CPU calculation is: 23.01943016052246s
The time cost of JIT calculation is: 0.04810166358947754s
The time cost of GPU calculation is: 0.01806473731994629s
在100000個原子的體系規(guī)模下,普通的for循環(huán)實現(xiàn)效率就非常的低下,需要23s,而經(jīng)過向量化運算的加速之后,直接飛升到了0.048s,而GPU上的加速更是達到了0.018s,相比于沒有GPU硬件加速的場景,實現(xiàn)了將近2倍的加速。但是這還遠遠不是GPU加速的上限,讓我們再測試一個更大的案例:
# cuda_grid.py from numba import jit from numba import cuda import numpy as np def grid_by_cpu(crd, rxyz, atoms, grids): """Transform coordinates [x,y,z] into grids [nx,ny,nz]. Args: crd(list): The 3-D coordinates of atoms. rxyz(list): The list includes xmin,ymin,zmin,grid_num. atoms(int): The total number of atoms. grids(list): The transformed grids matrix. """ for i in range(atoms): grids[i][0] = int((crd[i][0]-rxyz[0])/rxyz[3]) grids[i][1] = int((crd[i][1]-rxyz[1])/rxyz[3]) grids[i][2] = int((crd[i][2]-rxyz[2])/rxyz[3]) return grids @jit def grid_by_jit(crd, rxyz, atoms, grids): """Transform coordinates [x,y,z] into grids [nx,ny,nz]. Args: crd(list): The 3-D coordinates of atoms. rxyz(list): The list includes xmin,ymin,zmin,grid_num. atoms(int): The total number of atoms. grids(list): The transformed grids matrix. """ for i in range(atoms): grids[i][0] = int((crd[i][0]-rxyz[0])/rxyz[3]) grids[i][1] = int((crd[i][1]-rxyz[1])/rxyz[3]) grids[i][2] = int((crd[i][2]-rxyz[2])/rxyz[3]) return grids @cuda.jit def grid_by_gpu(crd, rxyz, grids): """Transform coordinates [x,y,z] into grids [nx,ny,nz]. Args: crd(list): The 3-D coordinates of atoms. rxyz(list): The list includes xmin,ymin,zmin,grid_num. atoms(int): The total number of atoms. grids(list): The transformed grids matrix. """ i,j = cuda.grid(2) grids[i][j] = int((crd[i][j]-rxyz[j])/rxyz[3]) if __name__=='__main__': import time from tqdm import trange np.random.seed(1) atoms = 5000000 grid_size = 0.1 crd = np.random.random((atoms,3)).astype(np.float32) xmin = min(crd[:,0]) ymin = min(crd[:,1]) zmin = min(crd[:,2]) xmax = max(crd[:,0]) ymax = max(crd[:,1]) zmax = max(crd[:,2]) xgrids = int((xmax-xmin)/grid_size)+1 ygrids = int((ymax-ymin)/grid_size)+1 zgrids = int((zmax-zmin)/grid_size)+1 rxyz = np.array([xmin,ymin,zmin,grid_size], dtype=np.float32) crd_cuda = cuda.to_device(crd) rxyz_cuda = cuda.to_device(rxyz) jit_time = 0 gpu_time = 0 for i in trange(100): grids = np.ones_like(crd)*(-1) time2 = time.time() grids_jit = grid_by_jit(crd, rxyz, atoms, grids) time3 = time.time() grids = np.ones_like(crd)*(-1) grids_cuda = cuda.to_device(grids) time4 = time.time() grid_by_gpu[(atoms,3),(1,1)](crd_cuda, rxyz_cuda, grids_cuda) time5 = time.time() if i != 0: jit_time += time3 - time2 gpu_time += time5 - time4 print ('The time cost of JIT calculation is: {}s'.format(jit_time)) print ('The time cost of GPU calculation is: {}s'.format(gpu_time))
在這個5000000個原子的案例中,因為普通的for循環(huán)已經(jīng)實在是跑不動了,因此我們就干脆不統(tǒng)計這一部分的時間,最后輸出結(jié)果如下:
$ python3 cuda_grid.py
100%|███████████████████████████| 100/100 [00:09<00:00, 10.15it/s]
The time cost of JIT calculation is: 2.3743042945861816s
The time cost of GPU calculation is: 0.022843599319458008s
在如此大規(guī)模的運算下,GPU實現(xiàn)100倍的加速,而此時作為對比的CPU上的實現(xiàn)方法是已經(jīng)用上了向量化運算的操作,也已經(jīng)可以認為是一個極致的加速了。
總結(jié)概要
在這篇文章中,我們主要介紹了打格點算法在分子動力學模擬中的重要價值,以及幾種不同的實現(xiàn)方式。其中最普通的for循環(huán)的實現(xiàn)效率比較低下,從算法復雜度上來講卻已經(jīng)是極致。而基于CPU上的向量化運算的技術(shù),可以對計算過程進行非常深度的優(yōu)化。當然,這個案例在不同的硬件上也能夠發(fā)揮出明顯不同的加速效果,在GPU的加持之下,可以獲得100倍以上的加速效果。這也是一個在Python上實現(xiàn)GPU加速算法的一個典型案例。
到此這篇關于Python3實現(xiàn)打格點算法的GPU加速的文章就介紹到這了,更多相關Python3實現(xiàn)打格點算法內(nèi)容請搜索腳本之家以前的文章或繼續(xù)瀏覽下面的相關文章希望大家以后多多支持腳本之家!
- Python基于pyCUDA實現(xiàn)GPU加速并行計算功能入門教程
- 關于Python的GPU編程實例近鄰表計算的講解
- Python實現(xiàn)GPU加速的基本操作
- GPU排隊腳本實現(xiàn)空閑觸發(fā)python腳本實現(xiàn)示例
- python 詳解如何使用GPU大幅提高效率
- python沒有g(shù)pu,如何改用cpu跑代碼
- 淺談Python實時檢測CPU和GPU的功耗
- 一文詳解如何用GPU來運行Python代碼
- Python Pytorch gpu 分析環(huán)境配置
- 利用Python進行全面的GPU環(huán)境檢測與分析
- Python調(diào)用GPU算力的實現(xiàn)步驟
相關文章
python使用sklearn實現(xiàn)決策樹的方法示例
這篇文章主要介紹了python使用sklearn實現(xiàn)決策樹的方法示例,文中通過示例代碼介紹的非常詳細,對大家的學習或者工作具有一定的參考學習價值,需要的朋友們下面隨著小編來一起學習學習吧2019-09-09Python for循環(huán)通過序列索引迭代過程解析
這篇文章主要介紹了Python for循環(huán)通過序列索引迭代過程解析,文中通過示例代碼介紹的非常詳細,對大家的學習或者工作具有一定的參考學習價值,需要的朋友可以參考下2020-02-02Python創(chuàng)建普通菜單示例【基于win32ui模塊】
這篇文章主要介紹了Python創(chuàng)建普通菜單,結(jié)合實例形式分析了Python基于win32ui模塊創(chuàng)建普通菜單及添加菜單項的相關操作技巧,并附帶說明了win32ui模塊的安裝命令,需要的朋友可以參考下2018-05-05利用Tensorboard繪制網(wǎng)絡識別準確率和loss曲線實例
今天小編就為大家分享一篇利用Tensorboard繪制網(wǎng)絡識別準確率和loss曲線實例,具有很好的參考價值,希望對大家有所幫助。一起跟隨小編過來看看吧2020-02-02python中opencv圖像疊加、圖像融合、按位操作的具體實現(xiàn)
opencv圖像操作可以更好更快的方便我們處理圖片,本文主要介紹了圖像疊加、圖像融合、按位操作,具有一定的參考價值,感興趣的小伙伴們可以參考一下2021-07-07