C++實現(xiàn)LeetCode(123.買股票的最佳時間之三)
[LeetCode] 123.Best Time to Buy and Sell Stock III 買股票的最佳時間之三
Say you have an array for which the ith element is the price of a given stock on day i.
Design an algorithm to find the maximum profit. You may complete at most two transactions.
Note: You may not engage in multiple transactions at the same time (i.e., you must sell the stock before you buy again).
Example 1:
Input: [3,3,5,0,0,3,1,4]
Output: 6
Explanation: Buy on day 4 (price = 0) and sell on day 6 (price = 3), profit = 3-0 = 3.
Then buy on day 7 (price = 1) and sell on day 8 (price = 4), profit = 4-1 = 3.
Example 2:
Input: [1,2,3,4,5]
Output: 4
Explanation: Buy on day 1 (price = 1) and sell on day 5 (price = 5), profit = 5-1 = 4.
Note that you cannot buy on day 1, buy on day 2 and sell them later, as you are
engaging multiple transactions at the same time. You must sell before buying again.
Example 3:
Input: [7,6,4,3,1]
Output: 0
Explanation: In this case, no transaction is done, i.e. max profit = 0.
這道是買股票的最佳時間系列問題中最難最復雜的一道,前面兩道 Best Time to Buy and Sell Stock 和 Best Time to Buy and Sell Stock II 的思路都非常的簡潔明了,算法也很簡單。而這道是要求最多交易兩次,找到最大利潤,還是需要用動態(tài)規(guī)劃Dynamic Programming來解,而這里我們需要兩個遞推公式來分別更新兩個變量local和global,我們其實可以求至少k次交易的最大利潤,找到通解后可以設定 k = 2,即為本題的解答。我們定義local[i][j]為在到達第i天時最多可進行j次交易并且最后一次交易在最后一天賣出的最大利潤,此為局部最優(yōu)。然后我們定義global[i][j]為在到達第i天時最多可進行j次交易的最大利潤,此為全局最優(yōu)。它們的遞推式為:
local[i][j] = max(global[i - 1][j - 1] + max(diff, 0), local[i - 1][j] + diff)
global[i][j] = max(local[i][j], global[i - 1][j])
其中局部最優(yōu)值是比較前一天并少交易一次的全局最優(yōu)加上大于0的差值,和前一天的局部最優(yōu)加上差值中取較大值,而全局最優(yōu)比較局部最優(yōu)和前一天的全局最優(yōu),代碼如下:
解法一:
class Solution { public: int maxProfit(vector<int> &prices) { if (prices.empty()) return 0; int n = prices.size(), g[n][3] = {0}, l[n][3] = {0}; for (int i = 1; i < prices.size(); ++i) { int diff = prices[i] - prices[i - 1]; for (int j = 1; j <= 2; ++j) { l[i][j] = max(g[i - 1][j - 1] + max(diff, 0), l[i - 1][j] + diff); g[i][j] = max(l[i][j], g[i - 1][j]); } } return g[n - 1][2]; } };
下面這種解法用一維數(shù)組來代替二維數(shù)組,可以極大的節(jié)省了空間,由于覆蓋的順序關系,我們需要j從2到1,這樣可以取到正確的g[j-1]值,而非已經(jīng)被覆蓋過的值,參見代碼如下:
解法二:
class Solution { public: int maxProfit(vector<int> &prices) { if (prices.empty()) return 0; int g[3] = {0}; int l[3] = {0}; for (int i = 0; i < prices.size() - 1; ++i) { int diff = prices[i + 1] - prices[i]; for (int j = 2; j >= 1; --j) { l[j] = max(g[j - 1] + max(diff, 0), l[j] + diff); g[j] = max(l[j], g[j]); } } return g[2]; } };
我們?nèi)绻僭Oprices數(shù)組為1, 3, 2, 9, 那么我們來看每次更新時local 和 global 的值:
第一天兩次交易: 第一天一次交易:
local: 0 0 0 local: 0 0 0
global: 0 0 0 global: 0 0 0
第二天兩次交易: 第二天一次交易:
local: 0 0 2 local: 0 2 2
global: 0 0 2 global: 0 2 2
第三天兩次交易: 第三天一次交易:
local: 0 2 2 local: 0 1 2
global: 0 2 2 global: 0 2 2
第四天兩次交易: 第四天一次交易:
local: 0 1 9 local: 0 8 9
global: 0 2 9 global: 0 8 9
其實上述的遞推公式關于local[i][j]的可以稍稍化簡一下,我們之前定義的local[i][j]為在到達第i天時最多可進行j次交易并且最后一次交易在最后一天賣出的最大利潤,然后解釋了一下第 i 天賣第 j 支股票的話,一定是下面的一種:
1. 今天剛買的
那么 Local(i, j) = Global(i-1, j-1)
相當于啥都沒干
2. 昨天買的
那么 Local(i, j) = Global(i-1, j-1) + diff
等于Global(i-1, j-1) 中的交易,加上今天干的那一票
3. 更早之前買的
那么 Local(i, j) = Local(i-1, j) + diff
昨天別賣了,留到今天賣
但其實第一種情況是不需要考慮的,因為當天買當天賣不會增加利潤,完全是重復操作,這種情況可以歸納在global[i-1][j-1]中,所以我們就不需要max(0, diff)了,那么由于兩項都加上了diff,所以我們可以把diff抽到max的外面,所以更新后的遞推公式為:
local[i][j] = max(global[i - 1][j - 1], local[i - 1][j]) + diff
global[i][j] = max(local[i][j], global[i - 1][j])
類似題目:
Best Time to Buy and Sell Stock with Cooldown
Best Time to Buy and Sell Stock IV
Best Time to Buy and Sell Stock II
Best Time to Buy and Sell Stock
參考資料:
https://leetcode.com/problems/best-time-to-buy-and-sell-stock-iii/
到此這篇關于C++實現(xiàn)LeetCode(123.買股票的最佳時間之三)的文章就介紹到這了,更多相關C++實現(xiàn)買股票的最佳時間之三內(nèi)容請搜索腳本之家以前的文章或繼續(xù)瀏覽下面的相關文章希望大家以后多多支持腳本之家!
相關文章
Visual?Studio?2022?配置?PCL?1.12.1?的問題小結(jié)
這篇文章主要介紹了Visual?Studio?2022?配置?PCL?1.12.1?的經(jīng)驗總結(jié)分享,本文通過圖文實例相結(jié)合給大家介紹的非常詳細,對大家的學習或工作具有一定的參考借鑒價值,需要的朋友可以參考下2022-08-08Visual?studio2022?利用glfw+glad配置OpenGL環(huán)境的詳細過程
這篇文章主要介紹了Visual?studio2022?利用glfw+glad配置OpenGL環(huán)境,本文通過實例代碼給大家介紹的非常詳細,對大家的學習或工作具有一定的參考借鑒價值,需要的朋友可以參考下2022-10-10C++常用函數(shù)總結(jié)(algorithm 頭文件)
本文給大家詳細介紹了algorithm 頭文件中最常用的函數(shù)及其使用方法,當然這只是其中的一部分,algorithm 頭文件中還有很多其他的函數(shù),感興趣的朋友一起看看吧2023-12-12