OpenCV 圖像梯度的實(shí)現(xiàn)方法
概述
OpenCV 是一個(gè)跨平臺的計(jì)算機(jī)視覺庫, 支持多語言, 功能強(qiáng)大. 今天小白就帶大家一起攜手走進(jìn) OpenCV 的世界.
梯度運(yùn)算
梯度: 膨脹 (Dilating) - 腐蝕 (Eroding).
例子:
# 讀取圖片 pie = cv2.imread("pie.png") # 核 kernel = np.ones((7, 7), np.uint8) # 計(jì)算梯度 gradient = cv2.morphologyEx(pie, cv2.MORPH_GRADIENT, kernel=kernel) # 圖片展示 cv2.imshow("gradient", gradient) cv2.waitKey(0) cv2.destroyAllWindows()
輸出結(jié)果:
禮帽
禮帽 (Top Hat): 原始輸入 - 開運(yùn)算結(jié)果.
例子:
# 讀取圖片 img = cv2.imread("white.png") # 核 kernel = np.ones((7, 7), np.uint8) # 禮帽 tophat = cv2.morphologyEx(img, cv2.MORPH_TOPHAT, kernel=kernel) # 圖片展示 cv2.imshow("tophat", tophat) cv2.waitKey(0) cv2.destroyAllWindows()
輸出結(jié)果:
黑帽
黑帽 (Black Hat): 閉運(yùn)算 - 原始輸入.
例子:
# 讀取圖片 img = cv2.imread("white.png") # 核 kernel = np.ones((7, 7), np.uint8) # 禮帽 blackhat = cv2.morphologyEx(img, cv2.MORPH_BLACKHAT, kernel=kernel) # 圖片展示 cv2.imshow("blackhat", blackhat) cv2.waitKey(0) cv2.destroyAllWindows()
輸出結(jié)果:
Sobel 算子
Sobel 算子 (Sobeloperator) 是邊緣檢測中非常重要的一個(gè)算子. Sobel 算子是一類離散性差分算子, 用來運(yùn)算圖像高亮度函數(shù)的灰度之近似值.
格式:
cv2.Sobel(src, ddepth, dx, dy, ksize)
參數(shù):
- src: 原圖
- ddepth: 圖片深度
- dx: 水平方向
- dy: 豎直方向
- ksize: 算子大小
計(jì)算 x
代碼:
# 讀取圖片 img = cv2.imread("pie.png") # Sobel算子 sobelx = cv2.Sobel(img, -1, 1, 0, ksize=3) # 展示圖片 cv2.imshow("sobelx", sobelx) cv2.waitKey(0) cv2.destroyAllWindows()
輸出結(jié)果:
計(jì)算 y
代碼:
# 讀取圖片 img = cv2.imread("pie.png") # Sobel算子 sobely = cv2.Sobel(img, -1, 0, 1, ksize=3) # 展示圖片 cv2.imshow("sobely", sobely) cv2.waitKey(0) cv2.destroyAllWindows()
輸出結(jié)果:
計(jì)算 x+y
代碼:
# 讀取圖片 img = cv2.imread("pie.png") # Sobel算子 sobel = cv2.Sobel(img, -1, 1, 1, ksize=3) # 展示圖片 cv2.imshow("sobel", sobel) cv2.waitKey(0) cv2.destroyAllWindows()
輸出結(jié)果:
融合
代碼:
# Sobel算子 sobelx = cv2.Sobel(img, cv2.CV_64F, 1, 0, ksize=3) sobely = cv2.Sobel(img, cv2.CV_64F, 0, 1, ksize=3) # 轉(zhuǎn)換成絕對值 sobelx = cv2.convertScaleAbs(sobelx) sobely = cv2.convertScaleAbs(sobely) # 融合 sobel_xy = cv2.addWeighted(sobelx, 0.5, sobely, 0.5, 0) # 展示圖片 cv2.imshow("sobel_xy", sobel_xy) cv2.waitKey(0) cv2.destroyAllWindows()
輸出結(jié)果:
注: 當(dāng) ddepth 設(shè)置為 -1, 即與原圖保持一致, 得到的結(jié)果可能是錯(cuò)誤的. 計(jì)算梯度值可能出現(xiàn)負(fù)數(shù), 負(fù)數(shù)會(huì)自動(dòng)截?cái)酁?0. 為了避免信息丟失, 我們需要使用更高是數(shù)據(jù)類型 cv2.CV_64F, 再通過取絕對值將其映射到 cv2.CV_8U 類型.
到此這篇關(guān)于OpenCV 圖像梯度的實(shí)現(xiàn)方法的文章就介紹到這了,更多相關(guān)OpenCV 圖像梯度內(nèi)容請搜索腳本之家以前的文章或繼續(xù)瀏覽下面的相關(guān)文章希望大家以后多多支持腳本之家!
相關(guān)文章
利用Python半自動(dòng)化生成Nessus報(bào)告的方法
這篇文章主要介紹了利用Python半自動(dòng)化生成Nessus報(bào)告的方法,小編覺得挺不錯(cuò)的,現(xiàn)在分享給大家,也給大家做個(gè)參考。一起跟隨小編過來看看吧2019-03-03Python實(shí)現(xiàn)圖的廣度和深度優(yōu)先路徑搜索算法
圖是一種抽象數(shù)據(jù)結(jié)構(gòu),本質(zhì)和樹結(jié)構(gòu)是一樣的。圖與樹相比較,圖具有封閉性,可以把樹結(jié)構(gòu)看成是圖結(jié)構(gòu)的前生。本文將利用Python實(shí)現(xiàn)圖的廣度和深度優(yōu)先路徑搜索算法,感興趣的可以學(xué)習(xí)一下2022-04-04Python中用try-except-finally處理異常問題
這篇文章主要介紹了Python中用try-except-finally處理異常問題,具有很好的參考價(jià)值,希望對大家有所幫助。如有錯(cuò)誤或未考慮完全的地方,望不吝賜教2022-12-12