亚洲乱码中文字幕综合,中国熟女仑乱hd,亚洲精品乱拍国产一区二区三区,一本大道卡一卡二卡三乱码全集资源,又粗又黄又硬又爽的免费视频

Java實(shí)現(xiàn)雪花算法的原理和實(shí)戰(zhàn)教程

 更新時(shí)間:2021年06月29日 17:59:21   作者:雨夜青草  
這篇文章主要介紹了Java實(shí)現(xiàn)雪花算法的原理和實(shí)戰(zhàn)教程,本文通過(guò)語(yǔ)言表述和代碼的實(shí)現(xiàn)講解了該項(xiàng)算法,,需要的朋友可以參考下

SnowFlake 算法,是 Twitter 開源的分布式 id 生成算法。其核心思想就是:使用一個(gè) 64 bit 的 long 型的數(shù)字作為全局唯一 id。在分布式系統(tǒng)中的應(yīng)用十分廣泛,且ID 引入了時(shí)間戳,基本上保持自增的,后面的代碼中有詳細(xì)的注解。

這 64 個(gè) bit 中,其中 1 個(gè) bit 是不用的,然后用其中的 41 bit 作為毫秒數(shù),用 10 bit 作為工作機(jī)器 id,12 bit 作為序列號(hào)。

給大家舉個(gè)例子吧,比如下面那個(gè) 64 bit 的 long 型數(shù)字:

  1. 第一個(gè)部分,是 1 個(gè) bit:0,這個(gè)是無(wú)意義的。
  2. 第二個(gè)部分是 41 個(gè) bit:表示的是時(shí)間戳。
  3. 第三個(gè)部分是 5 個(gè) bit:表示的是機(jī)房 id,10001。
  4. 第四個(gè)部分是 5 個(gè) bit:表示的是機(jī)器 id,1 1001。
  5. 第五個(gè)部分是 12 個(gè) bit:表示的序號(hào),就是某個(gè)機(jī)房某臺(tái)機(jī)器上這一毫秒內(nèi)同時(shí)生成的 id 的序號(hào),0000 00000000。

①1 bit:是不用的,為啥呢?

因?yàn)槎M(jìn)制里第一個(gè) bit 為如果是 1,那么都是負(fù)數(shù),但是我們生成的 id 都是正數(shù),所以第一個(gè) bit 統(tǒng)一都是 0。

②41 bit:表示的是時(shí)間戳,單位是毫秒。

41 bit 可以表示的數(shù)字多達(dá) 2^41 - 1,也就是可以標(biāo)識(shí) 2 ^ 41 - 1 個(gè)毫秒值,換算成年就是表示 69 年的時(shí)間。

③10 bit:記錄工作機(jī)器 id,代表的是這個(gè)服務(wù)最多可以部署在 2^10 臺(tái)機(jī)器上,也就是 1024 臺(tái)機(jī)器。

但是 10 bit 里 5 個(gè) bit 代表機(jī)房 id,5 個(gè) bit 代表機(jī)器 id。意思就是最多代表 2 ^ 5 個(gè)機(jī)房(32 個(gè)機(jī)房),每個(gè)機(jī)房里可以代表 2 ^ 5 個(gè)機(jī)器(32 臺(tái)機(jī)器),也可以根據(jù)自己公司的實(shí)際情況確定。

④12 bit:這個(gè)是用來(lái)記錄同一個(gè)毫秒內(nèi)產(chǎn)生的不同 id。

12 bit 可以代表的最大正整數(shù)是 2 ^ 12 - 1 = 4096,也就是說(shuō)可以用這個(gè) 12 bit 代表的數(shù)字來(lái)區(qū)分同一個(gè)毫秒內(nèi)的 4096 個(gè)不同的 id。

簡(jiǎn)單來(lái)說(shuō),你的某個(gè)服務(wù)假設(shè)要生成一個(gè)全局唯一 id,那么就可以發(fā)送一個(gè)請(qǐng)求給部署了 SnowFlake 算法的系統(tǒng),由這個(gè) SnowFlake 算法系統(tǒng)來(lái)生成唯一 id。

這個(gè) SnowFlake 算法系統(tǒng)首先肯定是知道自己所在的機(jī)房和機(jī)器的,比如機(jī)房 id = 17,機(jī)器 id = 12。

接著 SnowFlake 算法系統(tǒng)接收到這個(gè)請(qǐng)求之后,首先就會(huì)用二進(jìn)制位運(yùn)算的方式生成一個(gè) 64 bit 的 long 型 id,64 個(gè) bit 中的第一個(gè) bit 是無(wú)意義的。

接著 41 個(gè) bit,就可以用當(dāng)前時(shí)間戳(單位到毫秒),然后接著 5 個(gè) bit 設(shè)置上這個(gè)機(jī)房 id,還有 5 個(gè) bit 設(shè)置上機(jī)器 id。

最后再判斷一下,當(dāng)前這臺(tái)機(jī)房的這臺(tái)機(jī)器上這一毫秒內(nèi),這是第幾個(gè)請(qǐng)求,給這次生成 id 的請(qǐng)求累加一個(gè)序號(hào),作為最后的 12 個(gè) bit。

最終一個(gè) 64 個(gè) bit 的 id 就出來(lái)了,類似于:

這個(gè)算法可以保證說(shuō),一個(gè)機(jī)房的一臺(tái)機(jī)器上,在同一毫秒內(nèi),生成了一個(gè)唯一的 id。可能一個(gè)毫秒內(nèi)會(huì)生成多個(gè) id,但是有最后 12 個(gè) bit 的序號(hào)來(lái)區(qū)分開來(lái)。

下面我們簡(jiǎn)單看看這個(gè) SnowFlake 算法的一個(gè)代碼實(shí)現(xiàn),這就是個(gè)示例,大家如果理解了這個(gè)意思之后,以后可以自己嘗試改造這個(gè)算法。

總之就是用一個(gè) 64 bit 的數(shù)字中各個(gè) bit 位來(lái)設(shè)置不同的標(biāo)志位,區(qū)分每一個(gè) id。

SnowFlake 算法的實(shí)現(xiàn)代碼如下:

 
public class IdWorker {
 
	//因?yàn)槎M(jìn)制里第一個(gè) bit 為如果是 1,那么都是負(fù)數(shù),但是我們生成的 id 都是正數(shù),所以第一個(gè) bit 統(tǒng)一都是 0。
 
	//機(jī)器ID  2進(jìn)制5位  32位減掉1位 31個(gè)
	private long workerId;
	//機(jī)房ID 2進(jìn)制5位  32位減掉1位 31個(gè)
	private long datacenterId;
	//代表一毫秒內(nèi)生成的多個(gè)id的最新序號(hào)  12位 4096 -1 = 4095 個(gè)
	private long sequence;
	//設(shè)置一個(gè)時(shí)間初始值    2^41 - 1   差不多可以用69年
	private long twepoch = 1585644268888L;
	//5位的機(jī)器id
	private long workerIdBits = 5L;
	//5位的機(jī)房id
	private long datacenterIdBits = 5L;
	//每毫秒內(nèi)產(chǎn)生的id數(shù) 2 的 12次方
	private long sequenceBits = 12L;
	// 這個(gè)是二進(jìn)制運(yùn)算,就是5 bit最多只能有31個(gè)數(shù)字,也就是說(shuō)機(jī)器id最多只能是32以內(nèi)
	private long maxWorkerId = -1L ^ (-1L << workerIdBits);
	// 這個(gè)是一個(gè)意思,就是5 bit最多只能有31個(gè)數(shù)字,機(jī)房id最多只能是32以內(nèi)
	private long maxDatacenterId = -1L ^ (-1L << datacenterIdBits);
 
	private long workerIdShift = sequenceBits;
	private long datacenterIdShift = sequenceBits + workerIdBits;
	private long timestampLeftShift = sequenceBits + workerIdBits + datacenterIdBits;
	private long sequenceMask = -1L ^ (-1L << sequenceBits);
	//記錄產(chǎn)生時(shí)間毫秒數(shù),判斷是否是同1毫秒
	private long lastTimestamp = -1L;
	public long getWorkerId(){
		return workerId;
	}
	public long getDatacenterId() {
		return datacenterId;
	}
	public long getTimestamp() {
		return System.currentTimeMillis();
	}
 
 
 
	public IdWorker(long workerId, long datacenterId, long sequence) {
 
		// 檢查機(jī)房id和機(jī)器id是否超過(guò)31 不能小于0
		if (workerId > maxWorkerId || workerId < 0) {
			throw new IllegalArgumentException(
					String.format("worker Id can't be greater than %d or less than 0",maxWorkerId));
		}
 
		if (datacenterId > maxDatacenterId || datacenterId < 0) {
 
			throw new IllegalArgumentException(
					String.format("datacenter Id can't be greater than %d or less than 0",maxDatacenterId));
		}
		this.workerId = workerId;
		this.datacenterId = datacenterId;
		this.sequence = sequence;
	}
 
	// 這個(gè)是核心方法,通過(guò)調(diào)用nextId()方法,讓當(dāng)前這臺(tái)機(jī)器上的snowflake算法程序生成一個(gè)全局唯一的id
	public synchronized long nextId() {
		// 這兒就是獲取當(dāng)前時(shí)間戳,單位是毫秒
		long timestamp = timeGen();
		if (timestamp < lastTimestamp) {
 
			System.err.printf(
					"clock is moving backwards. Rejecting requests until %d.", lastTimestamp);
			throw new RuntimeException(
					String.format("Clock moved backwards. Refusing to generate id for %d milliseconds",
							lastTimestamp - timestamp));
		}
 
		// 下面是說(shuō)假設(shè)在同一個(gè)毫秒內(nèi),又發(fā)送了一個(gè)請(qǐng)求生成一個(gè)id
		// 這個(gè)時(shí)候就得把seqence序號(hào)給遞增1,最多就是4096
		if (lastTimestamp == timestamp) {
 
			// 這個(gè)意思是說(shuō)一個(gè)毫秒內(nèi)最多只能有4096個(gè)數(shù)字,無(wú)論你傳遞多少進(jìn)來(lái),
			//這個(gè)位運(yùn)算保證始終就是在4096這個(gè)范圍內(nèi),避免你自己傳遞個(gè)sequence超過(guò)了4096這個(gè)范圍
			sequence = (sequence + 1) & sequenceMask;
			//當(dāng)某一毫秒的時(shí)間,產(chǎn)生的id數(shù) 超過(guò)4095,系統(tǒng)會(huì)進(jìn)入等待,直到下一毫秒,系統(tǒng)繼續(xù)產(chǎn)生ID
			if (sequence == 0) {
				timestamp = tilNextMillis(lastTimestamp);
			}
 
		} else {
			sequence = 0;
		}
		// 這兒記錄一下最近一次生成id的時(shí)間戳,單位是毫秒
		lastTimestamp = timestamp;
		// 這兒就是最核心的二進(jìn)制位運(yùn)算操作,生成一個(gè)64bit的id
		// 先將當(dāng)前時(shí)間戳左移,放到41 bit那兒;將機(jī)房id左移放到5 bit那兒;將機(jī)器id左移放到5 bit那兒;將序號(hào)放最后12 bit
		// 最后拼接起來(lái)成一個(gè)64 bit的二進(jìn)制數(shù)字,轉(zhuǎn)換成10進(jìn)制就是個(gè)long型
		return ((timestamp - twepoch) << timestampLeftShift) |
				(datacenterId << datacenterIdShift) |
				(workerId << workerIdShift) | sequence;
	}
 
	/**
	 * 當(dāng)某一毫秒的時(shí)間,產(chǎn)生的id數(shù) 超過(guò)4095,系統(tǒng)會(huì)進(jìn)入等待,直到下一毫秒,系統(tǒng)繼續(xù)產(chǎn)生ID
	 * @param lastTimestamp
	 * @return
	 */
	private long tilNextMillis(long lastTimestamp) {
 
		long timestamp = timeGen();
 
		while (timestamp <= lastTimestamp) {
			timestamp = timeGen();
		}
		return timestamp;
	}
	//獲取當(dāng)前時(shí)間戳
	private long timeGen(){
		return System.currentTimeMillis();
	}
 
	/**
	 *  main 測(cè)試類
	 * @param args
	 */
	public static void main(String[] args) {
		System.out.println(1&4596);
		System.out.println(2&4596);
		System.out.println(6&4596);
		System.out.println(6&4596);
		System.out.println(6&4596);
		System.out.println(6&4596);
//		IdWorker worker = new IdWorker(1,1,1);
//		for (int i = 0; i < 22; i++) {
//			System.out.println(worker.nextId());
//		}
	}
}

SnowFlake算法的優(yōu)點(diǎn):

(1)高性能高可用:生成時(shí)不依賴于數(shù)據(jù)庫(kù),完全在內(nèi)存中生成。

(2)容量大:每秒中能生成數(shù)百萬(wàn)的自增ID。

(3)ID自增:存入數(shù)據(jù)庫(kù)中,索引效率高。

SnowFlake算法的缺點(diǎn):

依賴與系統(tǒng)時(shí)間的一致性,如果系統(tǒng)時(shí)間被回調(diào),或者改變,可能會(huì)造成id沖突或者重復(fù)。

實(shí)際中我們的機(jī)房并沒(méi)有那么多,我們可以改進(jìn)改算法,將10bit的機(jī)器id優(yōu)化,成業(yè)務(wù)表或者和我們系統(tǒng)相關(guān)的業(yè)務(wù)。

到此這篇關(guān)于Java實(shí)現(xiàn)雪花算法的原理和實(shí)戰(zhàn)教程的文章就介紹到這了,更多相關(guān)Java實(shí)現(xiàn)雪花算法內(nèi)容請(qǐng)搜索腳本之家以前的文章或繼續(xù)瀏覽下面的相關(guān)文章希望大家以后多多支持腳本之家!

相關(guān)文章

  • ssm框架+PageHelper插件實(shí)現(xiàn)分頁(yè)查詢功能

    ssm框架+PageHelper插件實(shí)現(xiàn)分頁(yè)查詢功能

    今天小編教大家如何通過(guò)ssm框架+PageHelper插件實(shí)現(xiàn)分頁(yè)查詢功能,首先大家需要新建一個(gè)maven工程引入jar包,本文通過(guò)實(shí)例代碼給大家介紹的非常詳細(xì),對(duì)大家的學(xué)習(xí)或工作具有一定的參考借鑒價(jià)值,需要的朋友參考下吧
    2021-06-06
  • Spring Cloud Gateway 服務(wù)網(wǎng)關(guān)快速實(shí)現(xiàn)解析

    Spring Cloud Gateway 服務(wù)網(wǎng)關(guān)快速實(shí)現(xiàn)解析

    這篇文章主要介紹了Spring Cloud Gateway 服務(wù)網(wǎng)關(guān)快速實(shí)現(xiàn)解析,文中通過(guò)示例代碼介紹的非常詳細(xì),對(duì)大家的學(xué)習(xí)或者工作具有一定的參考學(xué)習(xí)價(jià)值,需要的朋友可以參考下
    2019-08-08
  • Java 獲取原始請(qǐng)求域名實(shí)現(xiàn)示例

    Java 獲取原始請(qǐng)求域名實(shí)現(xiàn)示例

    這篇文章主要為大家介紹了Java 獲取原始請(qǐng)求域名實(shí)現(xiàn)示例,有需要的朋友可以借鑒參考下,希望能夠有所幫助,祝大家多多進(jìn)步,早日升職加薪
    2023-12-12
  • springboot用戶數(shù)據(jù)修改的詳細(xì)實(shí)現(xiàn)

    springboot用戶數(shù)據(jù)修改的詳細(xì)實(shí)現(xiàn)

    用戶管理功能作為所有的系統(tǒng)是必不可少的一部分,下面這篇文章主要給大家介紹了關(guān)于springboot用戶數(shù)據(jù)修改的相關(guān)資料,文中通過(guò)示例代碼介紹的非常詳細(xì),需要的朋友可以參考下
    2022-04-04
  • SpringBoot+vue實(shí)現(xiàn)登錄圖片驗(yàn)證碼功能

    SpringBoot+vue實(shí)現(xiàn)登錄圖片驗(yàn)證碼功能

    這篇文章主要給大家介紹一下如何SpringBoot+vue實(shí)現(xiàn)登錄圖片驗(yàn)證碼功能,文中有詳細(xì)的代碼示例,具有一定的參考價(jià)值,需要的朋友可以參考下
    2023-07-07
  • Java實(shí)現(xiàn)按行分割大文件

    Java實(shí)現(xiàn)按行分割大文件

    這篇文章主要為大家詳細(xì)介紹了Java實(shí)現(xiàn)按行分割大文件,文中示例代碼介紹的非常詳細(xì),具有一定的參考價(jià)值,感興趣的小伙伴們可以參考一下
    2020-05-05
  • 詳解spring中使用Elasticsearch的代碼實(shí)現(xiàn)

    詳解spring中使用Elasticsearch的代碼實(shí)現(xiàn)

    本篇文章主要介紹了詳解spring中使用Elasticsearch的代碼實(shí)現(xiàn),具有一定的參考價(jià)值,有興趣的可以了解一下
    2017-05-05
  • java并發(fā)編程之深入理解Synchronized的使用

    java并發(fā)編程之深入理解Synchronized的使用

    文詳細(xì)講述了線程、進(jìn)程的關(guān)系及在操作系統(tǒng)中的表現(xiàn),這是多線程學(xué)習(xí)必須了解的基礎(chǔ)。本文將接著講一下Java線程同步中的一個(gè)重要的概念synchronized,希望能夠給你有所幫助
    2021-06-06
  • Java工程使用ffmpeg進(jìn)行音視頻格式轉(zhuǎn)換的實(shí)現(xiàn)

    Java工程使用ffmpeg進(jìn)行音視頻格式轉(zhuǎn)換的實(shí)現(xiàn)

    FFmpeg是一套可以用來(lái)記錄、轉(zhuǎn)換數(shù)字音頻、視頻,并能將其轉(zhuǎn)化為流的開源計(jì)算機(jī)程序,本文主要介紹了Java工程使用ffmpeg進(jìn)行音視頻格式轉(zhuǎn)換的實(shí)現(xiàn)
    2024-02-02
  • Springboot集成Ehcache3實(shí)現(xiàn)本地緩存的配置方法

    Springboot集成Ehcache3實(shí)現(xiàn)本地緩存的配置方法

    EhCache是一個(gè)純Java的進(jìn)程內(nèi)緩存框架,是 Hibernate 中默認(rèn)的 CacheProvider,同Redis一樣,EhCache 不是純內(nèi)存緩存,它支持基于內(nèi)存和磁盤的二級(jí)緩存,本文介紹Springboot集成Ehcache3實(shí)現(xiàn)本地緩存的配置方法,感興趣的朋友一起看看吧
    2024-04-04

最新評(píng)論