python 爬取京東指定商品評論并進(jìn)行情感分析
項(xiàng)目地址
https://github.com/DA1YAYUAN/JD-comments-sentiment-analysis
爬取京東商城中指定商品下的用戶評論,對數(shù)據(jù)預(yù)處理后基于SnowNLP的sentiment模塊對文本進(jìn)行情感分析。
運(yùn)行環(huán)境
- Mac OS X
- Python3.7 requirements.txt
- Pycharm
運(yùn)行方法
數(shù)據(jù)爬?。╦d.comment.py)
- 啟動jd_comment.py,建議修改jd_comment.py中變量user-agent為自己瀏覽器用戶代理
- 輸入京東商品完整URL
- 得到京東評論詞云,存放于jd_ciyun.jpg(詞云輪廓形狀存放于jdicon.jpg)
- 得到京東評論數(shù)據(jù),存放于jd_comment.csv
import os import time import json import random import csv import re import jieba import requests import numpy as np from PIL import Image import matplotlib.pyplot as plt from wordcloud import WordCloud # 詞云形狀圖片 WC_MASK_IMG = 'jdicon.jpg' # 評論數(shù)據(jù)保存文件 COMMENT_FILE_PATH = 'jd_comment.txt' # 詞云字體 WC_FONT_PATH = '/Library/Fonts/Songti.ttc' def spider_comment(page=0, key=0): """ 爬取京東指定頁的評價數(shù)據(jù) :param page: 爬取第幾,默認(rèn)值為0 """ url = 'https://club.jd.com/comment/productPageComments.action?callback=fetchJSON_comment98vv4646&productId=' + key + '' \ '&score=0&sortType=5&page=%s&pageSize=10&isShadowSku=0&fold=1' % page kv = {'user-agent': 'Mozilla/5.0', 'Referer': 'https://item.jd.com/'+ key + '.html'}#原本key不輸入值,默認(rèn)為《三體》 try: r = requests.get(url, headers=kv) r.raise_for_status() except: print('爬取失敗') # 截取json數(shù)據(jù)字符串 r_json_str = r.text[26:-2] # 字符串轉(zhuǎn)json對象 r_json_obj = json.loads(r_json_str) # 獲取評價列表數(shù)據(jù) r_json_comments = r_json_obj['comments'] # 遍歷評論對象列表 for r_json_comment in r_json_comments: # 以追加模式換行寫入每條評價 with open(COMMENT_FILE_PATH, 'a+') as file: file.write(r_json_comment['content'] + '\n') # 打印評論對象中的評論內(nèi)容 print(r_json_comment['content']) def batch_spider_comment(): """ 批量爬取某東評價 """ # 寫入數(shù)據(jù)前先清空之前的數(shù)據(jù) if os.path.exists(COMMENT_FILE_PATH): os.remove(COMMENT_FILE_PATH) key = input("Please enter the address:") key = re.sub("\D","",key) #通過range來設(shè)定爬取的頁面數(shù) for i in range(10): spider_comment(i,key) # 模擬用戶瀏覽,設(shè)置一個爬蟲間隔,防止ip被封 time.sleep(random.random() * 5) def cut_word(): """ 對數(shù)據(jù)分詞 :return: 分詞后的數(shù)據(jù) """ with open(COMMENT_FILE_PATH) as file: comment_txt = file.read() wordlist = jieba.cut(comment_txt, cut_all=False)#精確模式 wl = " ".join(wordlist) print(wl) return wl def create_word_cloud(): """44144127306 生成詞云 :return: """ # 設(shè)置詞云形狀圖片 wc_mask = np.array(Image.open(WC_MASK_IMG)) # 設(shè)置詞云的一些配置,如:字體,背景色,詞云形狀,大小 wc = WordCloud(background_color="white", max_words=2000, mask=wc_mask, scale=4, max_font_size=50, random_state=42, font_path=WC_FONT_PATH) # 生成詞云 wc.generate(cut_word()) # 在只設(shè)置mask的情況下,你將會得到一個擁有圖片形狀的詞云 plt.imshow(wc, interpolation="bilinear") plt.axis("off") plt.figure() plt.show() wc.to_file("jd_ciyun.jpg") def txt_change_to_csv(): with open('jd_comment.csv', 'w+', encoding="utf8", newline='')as c: writer_csv = csv.writer(c, dialect="excel") with open("jd_comment.txt", 'r', encoding='utf8')as f: # print(f.readlines()) for line in f.readlines(): # 去掉str左右端的空格并以空格分割成list line_list = line.strip('\n').split(',') print(line_list) writer_csv.writerow(line_list) if __name__ == '__main__': # 爬取數(shù)據(jù) batch_spider_comment() #轉(zhuǎn)換數(shù)據(jù) txt_change_to_csv() # 生成詞云 create_word_cloud()
模型訓(xùn)練(train.py)
- 準(zhǔn)備正負(fù)語料集online_shopping_10_cats.csv,分別存入negative.txt和positive.txt
- 啟動train.py,新建文件sentiment.marshal,存入訓(xùn)練后的模型
- 找到外部庫中snownlp中sentiment模塊,將訓(xùn)練得到的sentiment.marshal.3文件覆蓋sentiment模塊中自帶的sentiment.marshal.3
# -*-coding:utf-8-*- def train(): from snownlp import sentiment print("開始訓(xùn)練數(shù)據(jù)集...") sentiment.train('negative.txt', 'positive.txt')#自己準(zhǔn)備數(shù)據(jù)集 sentiment.save('sentiment.marshal')#保存訓(xùn)練模型 #python2保存的是sentiment.marshal;python3保存的是sentiment.marshal.3 "訓(xùn)練完成后,將訓(xùn)練完的模型,替換sentiment中的模型" def main(): train() # 訓(xùn)練正負(fù)向商品評論數(shù)據(jù)集 print("數(shù)據(jù)集訓(xùn)練完成!") if __name__ == '__main__': main()
情感分析(sentiment.analysis.py)
- 啟動sentiment.analysis.py
- 開始對jd_comment.csv中評論進(jìn)行數(shù)據(jù)處理,處理后文件存入processed_comment_data.csv
- sentiment模塊根據(jù)sentiment.marshal.3對評論進(jìn)行情感評分,評分結(jié)果存入result.csv
- 評分結(jié)果可視化,生成文件fig.png
from snownlp import sentiment import pandas as pd import snownlp import matplotlib.pyplot as plt from matplotlib.font_manager import FontProperties #from word_cloud import word_cloud_creation, word_cloud_implementation, word_cloud_settings def read_csv(): '''讀取商品評論數(shù)據(jù)文件''' comment_data = pd.read_csv('jd_comment.csv', encoding='utf-8', sep='\n', index_col=None) #返回評論作為參數(shù) return comment_data def clean_data(data): '''數(shù)據(jù)清洗''' df = data.dropna() # 消除缺失數(shù)據(jù) NaN為缺失數(shù)據(jù) df = pd.DataFrame(df.iloc[:, 0].unique()) # 數(shù)據(jù)去重 return df # print('數(shù)據(jù)清洗后:', len(df)) def clean_repeat_word(raw_str, reverse=False): '''去除評論中的重復(fù)使用的詞匯''' if reverse: raw_str = raw_str[::-1] res_str = '' for i in raw_str: if i not in res_str: res_str += i if reverse: res_str = res_str[::-1] return res_str def processed_data(filename): '''清洗完畢的數(shù)據(jù),并保存''' df = clean_data(read_csv())#數(shù)據(jù)清洗 ser1 = df.iloc[:, 0].apply(clean_repeat_word)#去除重復(fù)詞匯 df2 = pd.DataFrame(ser1.apply(clean_repeat_word, reverse=True)) df2.to_csv(f'{filename}.csv', encoding='utf-8', index_label=None, index=None) def train(): '''訓(xùn)練正向和負(fù)向情感數(shù)據(jù)集,并保存訓(xùn)練模型''' sentiment.train('negative.txt', 'positive.txt') sentiment.save('seg.marshal')#python2保存的是sentiment.marshal;python3保存的是sentiment.marshal.3 sentiment_list = [] res_list = [] def test(filename, to_filename): '''商品評論-情感分析-測試''' with open(f'{filename}.csv', 'r', encoding='utf-8') as fr: for line in fr.readlines(): s = snownlp.SnowNLP(line) #調(diào)用snownlp中情感評分s.sentiments if s.sentiments > 0.6: res = '喜歡' res_list.append(1) elif s.sentiments < 0.4: res = '不喜歡' res_list.append(-1) else: res = '一般' res_list.append(0) sent_dict = { '情感分析結(jié)果': s.sentiments, '評價傾向': res, '商品評論': line.replace('\n', '') } sentiment_list.append(sent_dict) print(sent_dict) df = pd.DataFrame(sentiment_list) df.to_csv(f'{to_filename}.csv', index=None, encoding='utf-8', index_label=None, mode='w') def data_virtualization(): '''分析結(jié)果可視化,以條形圖為測試樣例''' font = FontProperties(fname='/System/Library/Fonts/Supplemental/Songti.ttc', size=14) likes = len([i for i in res_list if i == 1]) common = len([i for i in res_list if i == 0]) unlikes = len([i for i in res_list if i == -1]) plt.bar([1], [likes], label='喜歡')#(坐標(biāo),評論長度,名稱) plt.bar([2], [common], label='一般') plt.bar([3], [unlikes], label='不喜歡') x=[1,2,3] label=['喜歡','一般','不喜歡'] plt.xticks(x, label) plt.legend()#插入圖例 plt.xlabel('評價種類') plt.ylabel('評價數(shù)目') plt.title(u'商品評論情感分析結(jié)果-條形圖', FontProperties=font) plt.savefig('fig.png') plt.show() ''' def word_cloud_show(): #將商品評論轉(zhuǎn)為高頻詞匯的詞云 wl = word_cloud_creation('jd_comment.csv') wc = word_cloud_settings() word_cloud_implementation(wl, wc) ''' def main(): processed_data('processed_comment_data')#數(shù)據(jù)清洗 #train() # 訓(xùn)練正負(fù)向商品評論數(shù)據(jù)集 test('jd_comment', 'result') print('數(shù)據(jù)可視化中...') data_virtualization() # 數(shù)據(jù)可視化 print('python程序運(yùn)行結(jié)束。') if __name__ == '__main__': main()
詞云輪廓圖
商品評論詞云
情感分析結(jié)果可視化
以上就是python 爬取京東指定商品評論并進(jìn)行情感分析的詳細(xì)內(nèi)容,更多關(guān)于python 爬取京東評論并進(jìn)行情感分析的資料請關(guān)注腳本之家其它相關(guān)文章!
相關(guān)文章
python pytorch中.view()函數(shù)的用法解讀
這篇文章主要介紹了python pytorch中.view()函數(shù)的用法,具有很好的參考價值,希望對大家有所幫助,如有錯誤或未考慮完全的地方,望不吝賜教2023-08-08詳解Python數(shù)據(jù)分析--Pandas知識點(diǎn)
這篇文章主要介紹了Python數(shù)據(jù)分析--Pandas知識點(diǎn),文中通過示例代碼介紹的非常詳細(xì),對大家的學(xué)習(xí)或者工作具有一定的參考學(xué)習(xí)價值,需要的朋友們下面隨著小編來一起學(xué)習(xí)學(xué)習(xí)吧2019-03-03Python實(shí)現(xiàn)矩陣運(yùn)算的方法代碼實(shí)例
這篇文章主要介紹了Python實(shí)現(xiàn)矩陣運(yùn)算的方法代碼實(shí)例,想用python實(shí)現(xiàn)一個矩陣類,它可以像matlab或者numpy中的矩陣一樣進(jìn)行運(yùn)算,生成一個矩陣類Matrix之后,他接收一個二維列表作為輸入,然后將對應(yīng)的值寫到矩陣對應(yīng)的位置,需要的朋友可以參考下2023-08-08Django框架HttpRequest對象用法實(shí)例分析
這篇文章主要介紹了Django框架HttpRequest對象用法,結(jié)合實(shí)例形式分析了Django框架HttpRequest對象發(fā)送請求數(shù)據(jù)的相關(guān)使用技巧,需要的朋友可以參考下2019-11-11python mqtt 客戶端的實(shí)現(xiàn)代碼實(shí)例
這篇文章主要介紹了python mqtt 客戶端代碼實(shí)例,文中通過示例代碼介紹的非常詳細(xì),對大家的學(xué)習(xí)或者工作具有一定的參考學(xué)習(xí)價值,需要的朋友可以參考下2019-09-09