基于R語言for循環(huán)的替換方案
R語言中,for循環(huán)運(yùn)行比較慢
for(i in 1:1000){ print(i^2) }
補(bǔ)充:R語言:for循環(huán)使用小結(jié)
基本結(jié)構(gòu)展示:
vals =c(5,6,7) for(v in vals){ print(v) } #即把大括號(hào)里的內(nèi)容對vals里的每一個(gè)值都循環(huán)run一遍
實(shí)例展示:
1. paste() 命令是把幾個(gè)字符連接起來
如paste("A","B","C",sep=" ")得到的就是“A B C”,在次基礎(chǔ)上寫如下for loop:
partnumber = c(1,2,5,78) for(i in partnumber){ print(paste("participant number",i, sep = " ")) } #就可以得到一串參與者號(hào)碼,根據(jù)上面給定的幾個(gè)值, 從"participant number 1" 到"participant number 8"
2. 雙重loop
partnumber = c(1,2,5,78) institution =c("cancer center", "RMH", "Florey") for(i in partnumber){ for(j in institution){ print(paste("participant number",i,", institution",j,sep = " ")) } } # 先對j循環(huán),后對i循環(huán),得到如下結(jié)果 [1] "participant number 1 , institution cancer center" [1] "participant number 1 , institution RMH" [1] "participant number 1 , institution Florey" [1] "participant number 2 , institution cancer center" [1] "participant number 2 , institution RMH" [1] "participant number 2 , institution Florey" [1] "participant number 5 , institution cancer center" [1] "participant number 5 , institution RMH" [1] "participant number 5 , institution Florey" [1] "participant number 78 , institution cancer center" [1] "participant number 78 , institution RMH" [1] "participant number 78 , institution Florey" # 兩個(gè)loop的話,output得放最中心的loop里面,如果只要要第一層loop,就放在靠外一層括號(hào)里面,第二層括號(hào)就保留最后的一個(gè)值
3. 數(shù)據(jù)庫實(shí)例演示
Titanic=read.csv("https://goo.gl/4Gqsnz") #從網(wǎng)絡(luò)讀取數(shù)據(jù)<0.2, 0.2-0.6還是>0.6。
目的:看不同艙位(Pclass)和不同性別(Sex)的人的生存率是
A<- sort(unique(Pclass)) #sort可以把類別按大小順序排,unique()命令是把分類變量的種類提取出來 B<- sort(unique(Sex)) for(i in A){ for(j in B){ if(mean(Survived[Pclass==i&Sex==j])<0.2){ print(paste("for class",i,"sex",j,"mean survival is less than 0.2")) } else if (mean(Survived[Pclass==i&Sex==j])>0.6){ print(paste("for class",i,"sex",j,"mean survival is more than 0.6")) } else { print(paste("for class",i,"sex",j,"mean survival is between 0.2 and 0.6"))} } }
結(jié)果如下:
[1] "for class 1 sex female mean survival is more than 0.6"
[1] "for class 1 sex male mean survival is between 0.2 and 0.6"
[1] "for class 2 sex female mean survival is more than 0.6"
[1] "for class 2 sex male mean survival is less than 0.2"
[1] "for class 3 sex female mean survival is between 0.2 and 0.6"
[1] "for class 3 sex male mean survival is less than 0.2"
補(bǔ)充:R語言for循環(huán)批量生成變量,并且賦值
看代碼~
rm(list=ls()) data <- read.table("MS_identified_information.txt",header = T,sep = "\t",quote="",na.strings = "",row.names = 1,comment.char = "") name1 <- paste("H1299",sep = "_",c(1:3)) name2 <- paste("Metf",sep = "_",c(1:3)) name3 <- paste("OEMetf",sep = "_",c(1:3)) name <- data.frame(name1,name2,name3) mean.data=data.frame(row.names(data)) for (i in 1:3){ tmp <- subset(data,select = as.vector.factor(name[,i])) #篩選特定的樣本 mean_ <- as.data.frame(apply(tmp, 1, mean)) #行求平均值 //assign()功能就是對變量進(jìn)行賦值如i=1時(shí),df1=mean_ //把三次結(jié)果組合起來 mean.data <- cbind.data.frame(mean.data,assign(paste("df", i, sep=""), mean_)) //這里沒有體現(xiàn)出變量,實(shí)際上生成了df1,df2,df3結(jié)果 } colnames(mean.data) <- c("ID","H1299","Metf","OEMetf") write.table(mean.data,file="MS_mean.xls",row.names = FALSE,sep = "\t",na="")
以上為個(gè)人經(jīng)驗(yàn),希望能給大家一個(gè)參考,也希望大家多多支持腳本之家。如有錯(cuò)誤或未考慮完全的地方,望不吝賜教。
相關(guān)文章
R語言字符串知識(shí)點(diǎn)總結(jié)及實(shí)例分析
在本篇文章里小編給各位分享的是一篇關(guān)于R語言字符串知識(shí)點(diǎn)總結(jié)及實(shí)例分析,有興趣的朋友們可以學(xué)習(xí)下。2021-03-03R語言-生成頻數(shù)表和列聯(lián)表crosstable函數(shù)介紹
這篇文章主要介紹了R語言-生成頻數(shù)表和列聯(lián)表crosstable函數(shù)介紹,具有很好的參考價(jià)值,希望對大家有所幫助。一起跟隨小編過來看看吧2021-04-04R語言數(shù)據(jù)讀取以及數(shù)據(jù)保存方式
這篇文章主要介紹了R語言數(shù)據(jù)讀取以及數(shù)據(jù)保存方式,具有很好的參考價(jià)值,希望對大家有所幫助。一起跟隨小編過來看看吧2021-04-04R語言數(shù)據(jù)可視化繪圖Dot plot點(diǎn)圖畫法示例
這篇文章主要為大家介紹了R語言數(shù)據(jù)可視化繪圖Dot plot點(diǎn)圖的畫法示例,有需要的朋友可以借鑒參考下,希望能夠有所幫助,祝大家多多進(jìn)步2022-02-02