pandas調(diào)整列的順序以及添加列的實現(xiàn)
在對excel的操作中,調(diào)整列的順序以及添加一些列也是經(jīng)常用到的,下面我們用pandas實現(xiàn)這一功能。
1、調(diào)整列的順序
>>> df = pd.read_excel(r'D:/myExcel/1.xlsx') >>> df A B C D 0 bob 12 78 87 1 millor 15 92 21 >>> df.columns Index(['A', 'B', 'C', 'D'], dtype='object') # 這是最簡單常用的一種方法,相當于指定列名讓pandas # 從df中獲取 >>> df[['A', 'D', 'C', 'B']] A D C B 0 bob 87 78 12 1 millor 21 92 15 # 這也是可以的 >>> df[['A', 'A', 'A', 'A']] A A A A 0 bob bob bob bob 1 millor millor millor millor
2、添加某一列或者某幾列
(1)直接添加
>>> df['E']=[1, 2] >>> df A B C D E 0 bob 12 78 87 1 1 millor 15 92 21 2
(2)調(diào)用assign方法。該方法善于根據(jù)已有的列添加新的列,通過基本運算,或者調(diào)用函數(shù)
>>> df A B C D 0 bob 12 78 87 1 millor 15 92 21 # 其中E是列名,根據(jù)B列-C列的值得到 >>> df.assign(E=df['B'] - df['C']) A B C D E 0 bob 12 78 87 -66 1 millor 15 92 21 -77 # 添加兩列也可以 >>> df.assign(E=df['B'] - df['C'], F=df['B'] * df['C']) A B C D E F 0 bob 12 78 87 -66 936 1 millor 15 92 21 -77 1380
哈哈,以上就是pandas關于調(diào)整列的順序以及新增列的用法
補充:pandas修改DataFrame中的列名&調(diào)整列的順序
修改列名:
直接調(diào)用接口:
df.rename()
看一下接口中的定義:
def rename(self, *args, **kwargs):
"""
Alter axes labels.
Function / dict values must be unique (1-to-1). Labels not contained in
a dict / Series will be left as-is. Extra labels listed don't throw an
error.
See the :ref:`user guide <basics.rename>` for more.
Parameters
----------
mapper, index, columns : dict-like or function, optional
dict-like or functions transformations to apply to
that axis' values. Use either ``mapper`` and ``axis`` to
specify the axis to target with ``mapper``, or ``index`` and
``columns``.
axis : int or str, optional
Axis to target with ``mapper``. Can be either the axis name
('index', 'columns') or number (0, 1). The default is 'index'.
copy : boolean, default True
Also copy underlying data
inplace : boolean, default False
Whether to return a new DataFrame. If True then value of copy is
ignored.
level : int or level name, default None
In case of a MultiIndex, only rename labels in the specified
level.
Returns
-------
renamed : DataFrame
See Also
--------
pandas.DataFrame.rename_axis
Examples
--------
``DataFrame.rename`` supports two calling conventions
* ``(index=index_mapper, columns=columns_mapper, ...)``
* ``(mapper, axis={'index', 'columns'}, ...)``
We *highly* recommend using keyword arguments to clarify your
intent.
>>> df = pd.DataFrame({"A": [1, 2, 3], "B": [4, 5, 6]})
>>> df.rename(index=str, columns={"A": "a", "B": "c"})
a c
0 1 4
1 2 5
2 3 6
>>> df.rename(index=str, columns={"A": "a", "C": "c"})
a B
0 1 4
1 2 5
2 3 6
Using axis-style parameters
>>> df.rename(str.lower, axis='columns')
a b
0 1 4
1 2 5
2 3 6
>>> df.rename({1: 2, 2: 4}, axis='index')
A B
0 1 4
2 2 5
4 3 6
"""
axes = validate_axis_style_args(self, args, kwargs, 'mapper', 'rename')
kwargs.update(axes)
# Pop these, since the values are in `kwargs` under different names
kwargs.pop('axis', None)
kwargs.pop('mapper', None)
return super(DataFrame, self).rename(**kwargs)
注意:
一個*,輸入可以是數(shù)組、元組,會把輸入的數(shù)組或元組拆分成一個個元素。
兩個*,輸入必須是字典格式
示例:
>>>import pandas as pd
>>>a = pd.DataFrame({'A':[1,2,3], 'B':[4,5,6], 'C':[7,8,9]})
>>> a
A B C
0 1 4 7
1 2 5 8
2 3 6 9
#將列名A替換為列名a,B改為b,C改為c
>>>a.rename(columns={'A':'a', 'B':'b', 'C':'c'}, inplace = True)
>>>a
a b c
0 1 4 7
1 2 5 8
2 3 6 9
調(diào)整列的順序:
如:
>>> import pandas
>>> dict_a = {'user_id':['webbang','webbang','webbang'],'book_id':['3713327','4074636','26873486'],'rating':['4','4','4'],
'mark_date':['2017-03-07','2017-03-07','2017-03-07']}
>>> df = pandas.DataFrame(dict_a) # 從字典創(chuàng)建DataFrame
>>> df # 創(chuàng)建好的df列名默認按首字母順序排序,和字典中的先后順序并不一樣,字典中'user_id','book_id','rating','mark_date'
book_id mark_date rating user_id
0 3713327 2017-03-07 4 webbang
1 4074636 2017-03-07 4 webbang
2 26873486 2017-03-07 4 webbang
直接修改列名:
>>> df = df[['user_id','book_id','rating','mark_date']] # 調(diào)整列順序為'user_id','book_id','rating','mark_date' >>> df user_id book_id rating mark_date 0 webbang 3713327 4 2017-03-07 1 webbang 4074636 4 2017-03-07 2 webbang 26873486 4 2017-03-07
就可以了。
以上為個人經(jīng)驗,希望能給大家一個參考,也希望大家多多支持腳本之家。如有錯誤或未考慮完全的地方,望不吝賜教。
相關文章
深入理解Python中的 __new__ 和 __init__及區(qū)別介紹
這篇文章主要介紹了深入理解Python中的 __new__ 和 __init__及區(qū)別介紹,這兩個方法的主要區(qū)別在于:__new__ 負責對象的創(chuàng)建而 __init__ 負責對象的初始化。具體內(nèi)容詳情大家跟隨小編一起看看吧2018-09-09
ndarray數(shù)組的轉(zhuǎn)置(transpose)和軸對換方式
這篇文章主要介紹了ndarray數(shù)組的轉(zhuǎn)置(transpose)和軸對換方式,具有很好的參考價值,希望對大家有所幫助。如有錯誤或未考慮完全的地方,望不吝賜教2023-02-02
使用tensorflow保存和恢復模型saver.restore
這篇文章主要介紹了使用tensorflow保存和恢復模型saver.restore方式,具有很好的參考價值,希望對大家有所幫助,如有錯誤或未考慮完全的地方,望不吝賜教2024-02-02
一文帶你深入理解Python的`functools.lru_cache`裝飾器
Python中的functools.lru_cache裝飾器是一個非常有用的裝飾器,它可以幫助我們優(yōu)化遞歸函數(shù),避免重復計算已經(jīng)計算過的值,在這篇文章中,我們將探討?functools.lru_cache?的工作原理以及如何使用它,感興趣的朋友跟著小編一起來學習吧2023-07-07

