java自己手動(dòng)控制kafka的offset操作
之前使用kafka的KafkaStream,讓每個(gè)消費(fèi)者和對(duì)應(yīng)的patition建立對(duì)應(yīng)的流來(lái)讀取kafka上面的數(shù)據(jù),如果comsumer得到數(shù)據(jù),那么kafka就會(huì)自動(dòng)去維護(hù)該comsumer的offset,例如在獲取到kafka的消息后正準(zhǔn)備入庫(kù)(未入庫(kù)),但是消費(fèi)者掛了,那么如果讓kafka自動(dòng)去維護(hù)offset,它就會(huì)認(rèn)為這條數(shù)據(jù)已經(jīng)被消費(fèi)了,那么會(huì)造成數(shù)據(jù)丟失。
但是kafka可以讓你自己去手動(dòng)提交,如果在上面的場(chǎng)景中,那么需要我們手動(dòng)commit,如果comsumer掛了 那么程序就不會(huì)執(zhí)行commit這樣的話 其他同group的消費(fèi)者又可以消費(fèi)這條數(shù)據(jù),保證數(shù)據(jù)不丟,先要做如下設(shè)置:
//設(shè)置不自動(dòng)提交,自己手動(dòng)更新offset properties.put("enable.auto.commit", "false");
使用如下api提交:
consumer.commitSync();
注意:
剛做了個(gè)測(cè)試,如果我從kafka中取出5條數(shù)據(jù),分別為1,2,3,4,5,如果消費(fèi)者在執(zhí)行一些邏輯在執(zhí)行1,2,3,4的時(shí)候都失敗了未提交commit,然后消費(fèi)5做邏輯成功了提交了commit,那么offset也會(huì)被移動(dòng)到5那一條數(shù)據(jù)那里,1,2,3,4 相當(dāng)于也會(huì)丟失
如果是做消費(fèi)者取出數(shù)據(jù)執(zhí)行一些操作,全部都失敗的話,然后重啟消費(fèi)者,這些數(shù)據(jù)會(huì)從失敗的時(shí)候重新開(kāi)始讀取
所以消費(fèi)者還是應(yīng)該自己做容錯(cuò)機(jī)制
測(cè)試項(xiàng)目結(jié)構(gòu)如下:
其中ConsumerThreadNew類:
package com.lijie.kafka; import java.util.ArrayList; import java.util.Arrays; import java.util.List; import org.apache.kafka.clients.consumer.ConsumerRecord; import org.apache.kafka.clients.consumer.ConsumerRecords; import org.apache.kafka.clients.consumer.KafkaConsumer; import org.slf4j.Logger; import org.slf4j.LoggerFactory; /** * * * @Filename ConsumerThreadNew.java * * @Description * * @Version 1.0 * * @Author Lijie * * @Email lijiewj39069@touna.cn * * @History *<li>Author: Lijie</li> *<li>Date: 2017年3月21日</li> *<li>Version: 1.0</li> *<li>Content: create</li> * */ public class ConsumerThreadNew implements Runnable { private static Logger LOG = LoggerFactory.getLogger(ConsumerThreadNew.class); //KafkaConsumer kafka生產(chǎn)者 private KafkaConsumer<String, String> consumer; //消費(fèi)者名字 private String name; //消費(fèi)的topic組 private List<String> topics; //構(gòu)造函數(shù) public ConsumerThreadNew(KafkaConsumer<String, String> consumer, String topic, String name) { super(); this.consumer = consumer; this.name = name; this.topics = Arrays.asList(topic); } @Override public void run() { consumer.subscribe(topics); List<ConsumerRecord<String, String>> buffer = new ArrayList<>(); // 批量提交數(shù)量 final int minBatchSize = 1; while (true) { ConsumerRecords<String, String> records = consumer.poll(100); for (ConsumerRecord<String, String> record : records) { LOG.info("消費(fèi)者的名字為:" + name + ",消費(fèi)的消息為:" + record.value()); buffer.add(record); } if (buffer.size() >= minBatchSize) { //這里就是處理成功了然后自己手動(dòng)提交 consumer.commitSync(); LOG.info("提交完畢"); buffer.clear(); } } } }
MyConsume類如下:
package com.lijie.kafka; import java.util.Properties; import java.util.concurrent.ExecutorService; import java.util.concurrent.Executors; import org.apache.kafka.clients.consumer.KafkaConsumer; import org.slf4j.Logger; import org.slf4j.LoggerFactory; /** * * * @Filename MyConsume.java * * @Description * * @Version 1.0 * * @Author Lijie * * @Email lijiewj39069@touna.cn * * @History *<li>Author: Lijie</li> *<li>Date: 2017年3月21日</li> *<li>Version: 1.0</li> *<li>Content: create</li> * */ public class MyConsume { private static Logger LOG = LoggerFactory.getLogger(MyConsume.class); public MyConsume() { // TODO Auto-generated constructor stub } public static void main(String[] args) { Properties properties = new Properties(); properties.put("bootstrap.servers", "10.0.4.141:19093,10.0.4.142:19093,10.0.4.143:19093"); //設(shè)置不自動(dòng)提交,自己手動(dòng)更新offset properties.put("enable.auto.commit", "false"); properties.put("auto.offset.reset", "latest"); properties.put("zookeeper.connect", "10.0.4.141:2181,10.0.4.142:2181,10.0.4.143:2181"); properties.put("session.timeout.ms", "30000"); properties.put("key.deserializer", "org.apache.kafka.common.serialization.StringDeserializer"); properties.put("value.deserializer", "org.apache.kafka.common.serialization.StringDeserializer"); properties.put("group.id", "lijieGroup"); properties.put("zookeeper.connect", "192.168.80.123:2181"); properties.put("auto.commit.interval.ms", "1000"); ExecutorService executor = Executors.newFixedThreadPool(5); //執(zhí)行消費(fèi) for (int i = 0; i < 7; i++) { executor.execute(new ConsumerThreadNew(new KafkaConsumer<String, String>(properties), "lijietest", "消費(fèi)者" + (i + 1))); } } }
MyProducer類如下:
package com.lijie.kafka; import java.util.Properties; import org.apache.kafka.clients.producer.KafkaProducer; import org.apache.kafka.clients.producer.ProducerRecord; /** * * * @Filename MyProducer.java * * @Description * * @Version 1.0 * * @Author Lijie * * @Email lijiewj39069@touna.cn * * @History *<li>Author: Lijie</li> *<li>Date: 2017年3月21日</li> *<li>Version: 1.0</li> *<li>Content: create</li> * */ public class MyProducer { private static Properties properties; private static KafkaProducer<String, String> pro; static { //配置 properties = new Properties(); properties.put("bootstrap.servers", "10.0.4.141:19093,10.0.4.142:19093,10.0.4.143:19093"); //序列化類型 properties .put("value.serializer", "org.apache.kafka.common.serialization.StringSerializer"); properties.put("key.serializer", "org.apache.kafka.common.serialization.StringSerializer"); //創(chuàng)建生產(chǎn)者 pro = new KafkaProducer<>(properties); } public static void main(String[] args) throws Exception { produce("lijietest"); } public static void produce(String topic) throws Exception { //模擬message // String value = UUID.randomUUID().toString(); for (int i = 0; i < 10000; i++) { //封裝message ProducerRecord<String, String> pr = new ProducerRecord<String, String>(topic, i + ""); //發(fā)送消息 pro.send(pr); Thread.sleep(1000); } } }
pom文件如下:
<project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd"> <modelVersion>4.0.0</modelVersion> <groupId>lijie-kafka-offset</groupId> <artifactId>lijie-kafka-offset</artifactId> <version>0.0.1-SNAPSHOT</version> <dependencies> <dependency> <groupId>org.apache.kafka</groupId> <artifactId>kafka_2.11</artifactId> <version>0.10.1.1</version> </dependency> <dependency> <groupId>org.apache.hadoop</groupId> <artifactId>hadoop-common</artifactId> <version>2.2.0</version> </dependency> <dependency> <groupId>org.apache.hadoop</groupId> <artifactId>hadoop-hdfs</artifactId> <version>2.2.0</version> </dependency> <dependency> <groupId>org.apache.hadoop</groupId> <artifactId>hadoop-client</artifactId> <version>2.2.0</version> </dependency> <dependency> <groupId>org.apache.hbase</groupId> <artifactId>hbase-client</artifactId> <version>1.0.3</version> </dependency> <dependency> <groupId>org.apache.hbase</groupId> <artifactId>hbase-server</artifactId> <version>1.0.3</version> </dependency> <dependency> <groupId>org.apache.hadoop</groupId> <artifactId>hadoop-hdfs</artifactId> <version>2.2.0</version> </dependency> <dependency> <groupId>jdk.tools</groupId> <artifactId>jdk.tools</artifactId> <version>1.7</version> <scope>system</scope> <systemPath>${JAVA_HOME}/lib/tools.jar</systemPath> </dependency> <dependency> <groupId>org.apache.httpcomponents</groupId> <artifactId>httpclient</artifactId> <version>4.3.6</version> </dependency> </dependencies> <build> <plugins> <plugin> <groupId>org.apache.maven.plugins</groupId> <artifactId>maven-compiler-plugin</artifactId> <configuration> <source>1.7</source> <target>1.7</target> </configuration> </plugin> </plugins> </build> </project>
補(bǔ)充:kafka javaAPI 手動(dòng)維護(hù)偏移量
我就廢話不多說(shuō)了,大家還是直接看代碼吧~
package com.kafka; import kafka.javaapi.PartitionMetadata; import kafka.javaapi.consumer.SimpleConsumer; import org.apache.kafka.clients.consumer.ConsumerRecord; import org.apache.kafka.clients.consumer.ConsumerRecords; import org.apache.kafka.clients.consumer.KafkaConsumer; import org.apache.kafka.clients.consumer.OffsetAndMetadata; import org.apache.kafka.common.TopicPartition; import org.junit.Test; import java.util.*; public class ConsumerManageOffet { //broker的地址, //與老版的kafka的區(qū)別是,新版本的kafka把偏移量保存到了broker,而老版本的是把偏移量保存到了zookeeper中 //所以在讀取數(shù)據(jù)時(shí),應(yīng)當(dāng)設(shè)置broker的地址 private static String ips = "192.168.136.150:9092,192.168.136.151:9092,192.168.136.152:9092"; public static void main(String[] args) { Properties props = new Properties(); props.put("bootstrap.servers",ips); props.put("group.id","test02"); props.put("auto.offset.reset","earliest"); props.put("max.poll.records","10"); props.put("key.deserializer","org.apache.kafka.common.serialization.StringDeserializer"); props.put("value.deserializer","org.apache.kafka.common.serialization.StringDeserializer"); KafkaConsumer<String,String> consumer = new KafkaConsumer<>(props); consumer.subscribe(Arrays.asList("my-topic")); System.out.println("---------------------"); while(true){ ConsumerRecords<String,String> records = consumer.poll(10); System.out.println("+++++++++++++++++++++++"); for(ConsumerRecord<String,String> record: records){ System.out.println("---"); System.out.printf("offset=%d,key=%s,value=%s%n",record.offset(), record.key(),record.value()); } } } //手動(dòng)維護(hù)偏移量 @Test public void autoManageOffset2(){ Properties props = new Properties(); //broker的地址 props.put("bootstrap.servers",ips); //這是消費(fèi)者組 props.put("group.id","groupPP"); //設(shè)置消費(fèi)的偏移量,如果以前消費(fèi)過(guò)則接著消費(fèi),如果沒(méi)有就從頭開(kāi)始消費(fèi) props.put("auto.offset.reset","earliest"); //設(shè)置自動(dòng)提交偏移量為false props.put("enable.auto.commit","false"); //設(shè)置Key和value的序列化 props.put("key.deserializer", "org.apache.kafka.common.serialization.StringDeserializer"); props.put("value.deserializer", "org.apache.kafka.common.serialization.StringDeserializer"); //new一個(gè)消費(fèi)者 KafkaConsumer<String, String> consumer = new KafkaConsumer<>(props); //指定消費(fèi)的topic consumer.subscribe(Arrays.asList("my-topic")); while(true){ ConsumerRecords<String, String> records = consumer.poll(1000); //通過(guò)records獲取這個(gè)集合中的數(shù)據(jù)屬于那幾個(gè)partition Set<TopicPartition> partitions = records.partitions(); for(TopicPartition tp : partitions){ //通過(guò)具體的partition把該partition中的數(shù)據(jù)拿出來(lái)消費(fèi) List<ConsumerRecord<String, String>> partitionRecords = records.records(tp); for(ConsumerRecord r : partitionRecords){ System.out.println(r.offset() +" "+r.key()+" "+r.value()); } //獲取新這個(gè)partition中的最后一條記錄的offset并加1 那么這個(gè)位置就是下一次要提交的offset long newOffset = partitionRecords.get(partitionRecords.size() - 1).offset() + 1; consumer.commitSync(Collections.singletonMap(tp,new OffsetAndMetadata(newOffset))); } } } }
以上為個(gè)人經(jīng)驗(yàn),希望能給大家一個(gè)參考,也希望大家多多支持腳本之家。如有錯(cuò)誤或未考慮完全的地方,望不吝賜教。
相關(guān)文章
SpringBoot如何讀取配置文件中的數(shù)據(jù)到map和list
這篇文章主要介紹了SpringBoot如何讀取配置文件中的數(shù)據(jù)到map和list,具有很好的參考價(jià)值,希望對(duì)大家有所幫助。如有錯(cuò)誤或未考慮完全的地方,望不吝賜教2022-02-02詳解SpringMVC組件之HandlerMapping(二)
這篇文章主要介紹了詳解SpringMVC組件之HandlerMapping(二),HandlerMapping組件是Spring?MVC核心組件,用來(lái)根據(jù)請(qǐng)求的request查找對(duì)應(yīng)的Handler,在Spring?MVC中,有各式各樣的Web請(qǐng)求,每個(gè)請(qǐng)求都需要一個(gè)對(duì)應(yīng)的Handler來(lái)處理,需要的朋友可以參考下2023-08-08IDEA中Spring Initializr沒(méi)有Java8選項(xiàng)的解決辦法
在使用IDEA中的Spring Initializr創(chuàng)建新項(xiàng)目時(shí),Java 版本近可選擇Java17,21 ,不能選擇Java8;SpringBoot 版本也只有 3.x,所以本文給大家介紹了IDEA中Spring Initializr沒(méi)有Java8選項(xiàng)的解決辦法,需要的朋友可以參考下2024-06-06MyBatis-Plus通用枚舉自動(dòng)關(guān)聯(lián)注入的實(shí)現(xiàn)
本文主要介紹了MyBatis-Plus通用枚舉自動(dòng)關(guān)聯(lián)注入的實(shí)現(xiàn),解決了繁瑣的配置,讓 mybatis 優(yōu)雅的使用枚舉屬性,感興趣的可以一起來(lái)了解一下2021-06-06Java的long和bigint長(zhǎng)度對(duì)比詳解
在本文中小編給大家分享了關(guān)于Java的long和bigint長(zhǎng)度比較的知識(shí)點(diǎn)內(nèi)容,有興趣的朋友們學(xué)習(xí)參考下。2019-07-07SpringMVC 上傳文件 MultipartFile 轉(zhuǎn)為 File的方法
這篇文章主要介紹了SpringMVC 上傳文件 MultipartFile 轉(zhuǎn)為 File的方法,文中通過(guò)示例代碼介紹的非常詳細(xì),對(duì)大家的學(xué)習(xí)或者工作具有一定的參考學(xué)習(xí)價(jià)值,需要的朋友們下面隨著小編來(lái)一起學(xué)習(xí)學(xué)習(xí)吧2020-02-02springboot + vue 實(shí)現(xiàn)遞歸生成多級(jí)菜單(實(shí)例代碼)
這篇文章主要介紹了springboot + vue 實(shí)現(xiàn)遞歸生成多級(jí)菜單,本文通過(guò)實(shí)例代碼給大家介紹的非常詳細(xì),具有一定的參考借鑒價(jià)值,需要的朋友可以參考下2019-12-12Java try catch finally異常處理組合詳解
這篇文章主要介紹了Java try catch finally異常處理組合詳解,文中通過(guò)示例代碼介紹的非常詳細(xì),對(duì)大家的學(xué)習(xí)或者工作具有一定的參考學(xué)習(xí)價(jià)值,需要的朋友可以參考下2020-05-05Java從零實(shí)現(xiàn)超市會(huì)員管理系統(tǒng)
這篇文章主要為大家詳細(xì)介紹了Java實(shí)現(xiàn)超市會(huì)員管理系統(tǒng),文中示例代碼介紹的非常詳細(xì),具有一定的參考價(jià)值,感興趣的小伙伴們可以參考一下2022-12-12