python 檢測(cè)圖片是否有馬賽克
首先是Canny邊緣檢測(cè),將圖片的邊緣檢測(cè)出來(lái),參考博客https://www.cnblogs.com/techyan1990/p/7291771.html
原理講的很清晰,給原博主一個(gè)贊
邊緣檢測(cè)之后按照正方形檢索來(lái)判定是否是馬賽克內(nèi)容
原理知曉了之后就很好做了
話說(shuō)MATLAB轉(zhuǎn)化為python的過(guò)程還是很有趣的
from PIL import Image
import numpy as np
import math
import warnings
#算法來(lái)源,博客https://www.cnblogs.com/techyan1990/p/7291771.html和https://blog.csdn.net/zhancf/article/details/49736823
highhold=200#高閾值
lowhold=40#低閾值
warnings.filterwarnings("ignore")
demo=Image.open("noise_check//23.jpg")
im=np.array(demo.convert('L'))#灰度化矩陣
print(im.shape)
print(im.dtype)
height=im.shape[0]#尺寸
width=im.shape[1]
gm=[[0 for i in range(width)]for j in range(height)]#梯度強(qiáng)度
gx=[[0 for i in range(width)]for j in range(height)]#梯度x
gy=[[0 for i in range(width)]for j in range(height)]#梯度y
theta=0#梯度方向角度360度
dirr=[[0 for i in range(width)]for j in range(height)]#0,1,2,3方位判定值
highorlow=[[0 for i in range(width)]for j in range(height)]#強(qiáng)邊緣、弱邊緣、忽略判定值2,1,0
rm=np.array([[0 for i in range(width)]for j in range(height)])#輸出矩陣
#高斯濾波平滑,3x3
for i in range(1,height-1,1):
for j in range(1,width-1,1):
rm[i][j]=im[i-1][j-1]*0.0924+im[i-1][j]*0.1192+im[i-1][j+1]*0.0924+im[i][j-1]*0.1192+im[i][j]*0.1538+im[i][j+1]*0.1192+im[i+1][j-1]*0.0924+im[i+1][j]*0.1192+im[i+1][j+1]*0.0924
for i in range(1,height-1,1):#梯度強(qiáng)度和方向
for j in range(1,width-1,1):
gx[i][j]=-rm[i-1][j-1]+rm[i-1][j+1]-2*rm[i][j-1]+2*rm[i][j+1]-rm[i+1][j-1]+rm[i+1][j+1]
gy[i][j]=rm[i-1][j-1]+2*rm[i-1][j]+rm[i-1][j+1]-rm[i+1][j-1]-2*rm[i+1][j]-rm[i+1][j+1]
gm[i][j]=pow(gx[i][j]*gx[i][j]+gy[i][j]*gy[i][j],0.5)
theta=math.atan(gy[i][j]/gx[i][j])*180/3.1415926
if theta>=0 and theta<45:
dirr[i][j]=2
elif theta>=45 and theta<90:
dirr[i][j]=3
elif theta>=90 and theta<135:
dirr[i][j]=0
else:
dirr[i][j]=1
for i in range(1,height-1,1):#非極大值抑制,雙閾值監(jiān)測(cè)
for j in range(1,width-1,1):
NW=gm[i-1][j-1]
N=gm[i-1][j]
NE=gm[i-1][j+1]
W=gm[i][j-1]
E=gm[i][j+1]
SW=gm[i+1][j-1]
S=gm[i+1][j]
SE=gm[i+1][j+1]
if dirr[i][j]==0:
d=abs(gy[i][j]/gx[i][j])
gp1=(1-d)*E+d*NE
gp2=(1-d)*W+d*SW
elif dirr[i][j]==1:
d=abs(gx[i][j]/gy[i][j])
gp1=(1-d)*N+d*NE
gp2=(1-d)*S+d*SW
elif dirr[i][j]==2:
d=abs(gx[i][j]/gy[i][j])
gp1=(1-d)*N+d*NW
gp2=(1-d)*S+d*SE
elif dirr[i][j]==3:
d=abs(gy[i][j]/gx[i][j])
gp1=(1-d)*W+d*NW
gp2=(1-d)*E+d*SE
if gm[i][j]>=gp1 and gm[i][j]>=gp2:
if gm[i][j]>=highhold:
highorlow[i][j]=2
rm[i][j]=1
elif gm[i][j]>=lowhold:
highorlow[i][j]=1
else:
highorlow[i][j]=0
rm[i][j]=0
else:
highorlow[i][j]=0
rm[i][j]=0
for i in range(1,height-1,1):#抑制孤立低閾值點(diǎn)
for j in range(1,width-1,1):
if highorlow[i][j]==1 and (highorlow[i-1][j-1]==2 or highorlow[i-1][j]==2 or highorlow[i-1][j+1]==2 or highorlow[i][j-1]==2 or highorlow[i][j+1]==2 or highorlow[i+1][j-1]==2 or highorlow[i+1][j]==2 or highorlow[i+1][j+1]==2):
#highorlow[i][j]=2
rm[i][j]=1
#img=Image.fromarray(rm)#矩陣化為圖片
#img.show()
#正方形法判定是否有馬賽克
value=35
lowvalue=16
imgnumber=[0 for i in range(value)]
for i in range(1,height-1,1):#性價(jià)比高的8點(diǎn)判定法
for j in range(1,width-1,1):
for k in range(lowvalue,value):
count=0
if i+k-1>=height or j+k-1>=width:continue
if rm[i][j]!=0:count+=1#4個(gè)頂點(diǎn)
if rm[i+k-1][j]!=0:count+=1
if rm[i][j+k-1]!=0:count+=1
if rm[i+k-1][j+k-1]!=0:count+=1
e=(k-1)//2
if rm[i+e][j]!=0:count+=1
if rm[i][j+e]!=0:count+=1
if rm[i+e][j+k-1]!=0:count+=1
if rm[i+k-1][j+e]!=0:count+=1
if count>=6:
imgnumber[k]+=1
for i in range(lowvalue,value):
print("length:{} number:{}".format(i,imgnumber[i]))
結(jié)果圖可以上一下了
可以看出在一定程度上能夠檢測(cè)出馬賽克內(nèi)容
原圖

邊緣圖案

正方形數(shù)量

以上就是python 檢測(cè)圖片是否有馬賽克的詳細(xì)內(nèi)容,更多關(guān)于python 檢測(cè)圖片馬賽克的資料請(qǐng)關(guān)注腳本之家其它相關(guān)文章!
- python 實(shí)現(xiàn)圖片修復(fù)(可用于去水?。?/a>
- python實(shí)現(xiàn)圖片,視頻人臉識(shí)別(dlib版)
- python實(shí)現(xiàn)圖片,視頻人臉識(shí)別(opencv版)
- python切割圖片的示例
- python圖片合成的示例
- Python 實(shí)現(xiàn)圖片轉(zhuǎn)字符畫(huà)的示例(靜態(tài)圖片,gif皆可)
- python 實(shí)現(xiàn)批量圖片識(shí)別并翻譯
- Python操作word文檔插入圖片和表格的實(shí)例演示
- Python提取視頻中圖片的示例(按幀、按秒)
- python 調(diào)整圖片亮度的示例
相關(guān)文章
Python numpy線性代數(shù)用法實(shí)例解析
這篇文章主要介紹了Python numpy線性代數(shù)用法實(shí)例解析,文中通過(guò)示例代碼介紹的非常詳細(xì),對(duì)大家的學(xué)習(xí)或者工作具有一定的參考學(xué)習(xí)價(jià)值,需要的朋友可以參考下2019-11-11
國(guó)產(chǎn)麒麟系統(tǒng)kylin部署python項(xiàng)目詳細(xì)步驟
這篇文章主要給大家介紹了關(guān)于國(guó)產(chǎn)麒麟系統(tǒng)kylin部署python項(xiàng)目的相關(guān)資料,文中通過(guò)代碼示例介紹的非常詳細(xì),對(duì)大家的學(xué)習(xí)或者工作具有一定的參考借鑒價(jià)值,需要的朋友可以參考下2023-09-09
Python matplotlib繪制實(shí)時(shí)數(shù)據(jù)動(dòng)畫(huà)
Matplotlib作為Python的2D繪圖庫(kù),它以各種硬拷貝格式和跨平臺(tái)的交互式環(huán)境生成出版質(zhì)量級(jí)別的圖形。本文將利用Matplotlib庫(kù)繪制實(shí)時(shí)數(shù)據(jù)動(dòng)畫(huà),感興趣的可以了解一下2022-03-03
深入理解Python虛擬機(jī)中的Code?obejct
在本篇文章當(dāng)中主要給大家深入介紹在?cpython?當(dāng)中非常重要的一個(gè)數(shù)據(jù)結(jié)構(gòu)?code?object!?我們簡(jiǎn)單介紹了一下在?code?object?當(dāng)中有哪些字段以及這些字段的簡(jiǎn)單含義,在本篇文章當(dāng)中將會(huì)舉一些例子以便更加深入理解這些字段2023-04-04
python ChainMap 合并字典的實(shí)現(xiàn)步驟
這篇文章主要介紹了python ChainMap 合并字典的實(shí)現(xiàn)步驟,文中通過(guò)示例代碼介紹的非常詳細(xì),對(duì)大家的學(xué)習(xí)或者工作具有一定的參考學(xué)習(xí)價(jià)值,需要的朋友們下面隨著小編來(lái)一起學(xué)習(xí)學(xué)習(xí)吧2019-06-06
Python使用type關(guān)鍵字創(chuàng)建類步驟詳解
在本文里我們給讀者們整理了關(guān)于Python如何使用type關(guān)鍵字創(chuàng)建類的相關(guān)知識(shí)點(diǎn),需要的朋友們參考學(xué)習(xí)下。2019-07-07
Python+tkinter制作經(jīng)典登錄界面和點(diǎn)擊事件
Tkinter是?Python?標(biāo)準(zhǔn)?GUI?庫(kù),簡(jiǎn)稱?“Tk”;從本質(zhì)上來(lái)說(shuō),它是對(duì)?TCL/TK?工具包的一種?Python?接口封裝。本文將利用tkinter制作一個(gè)經(jīng)典的登錄界面和點(diǎn)擊事件,需要的可以參考一下2022-09-09
Python利用pandas和matplotlib實(shí)現(xiàn)繪制堆疊柱狀圖
在數(shù)據(jù)可視化中,堆疊柱狀圖是一種常用的圖表類型,它能夠清晰地展示多個(gè)類別的數(shù)據(jù),本文將演示如何使用 Python 的 pandas 和 matplotlib 庫(kù)繪制優(yōu)化的堆疊柱狀圖,需要的可以參考下2023-11-11

