Prometheus開發(fā)中間件Exporter過程詳解
Prometheus 為開發(fā)這提供了客戶端工具,用于為自己的中間件開發(fā)Exporter,對接Prometheus 。
目前支持的客戶端
以go為例開發(fā)自己的Exporter
依賴包的引入
工程結(jié)構(gòu)
[root@node1 data]# tree exporter/
exporter/
├── collector
│ └── node.go
├── go.mod
└── main.go
引入依賴包
require (
github.com/modern-go/concurrent v0.0.0-20180306012644-bacd9c7ef1dd // indirect
github.com/modern-go/reflect2 v1.0.1 // indirect
github.com/prometheus/client_golang v1.1.0
//借助gopsutil 采集主機(jī)指標(biāo)
github.com/shirou/gopsutil v0.0.0-20190731134726-d80c43f9c984
)
main.go
package main
import (
"cloud.io/exporter/collector"
"fmt"
"github.com/prometheus/client_golang/prometheus"
"github.com/prometheus/client_golang/prometheus/promhttp"
"net/http"
)
func init() {
//注冊自身采集器
prometheus.MustRegister(collector.NewNodeCollector())
}
func main() {
http.Handle("/metrics", promhttp.Handler())
if err := http.ListenAndServe(":8080", nil); err != nil {
fmt.Printf("Error occur when start server %v", err)
}
}
為了能看清結(jié)果我將默認(rèn)采集器注釋,位置registry.go
func init() {
//MustRegister(NewProcessCollector(ProcessCollectorOpts{}))
//MustRegister(NewGoCollector())
}
/collector/node.go
代碼中涵蓋了Counter、Gauge、Histogram、Summary四種情況,一起混合使用的情況,具體的說明見一下代碼中。
package collector
import (
"github.com/prometheus/client_golang/prometheus"
"github.com/shirou/gopsutil/host"
"github.com/shirou/gopsutil/mem"
"runtime"
"sync"
)
var reqCount int32
var hostname string
type NodeCollector struct {
requestDesc *prometheus.Desc //Counter
nodeMetrics nodeStatsMetrics //混合方式
goroutinesDesc *prometheus.Desc //Gauge
threadsDesc *prometheus.Desc //Gauge
summaryDesc *prometheus.Desc //summary
histogramDesc *prometheus.Desc //histogram
mutex sync.Mutex
}
//混合方式數(shù)據(jù)結(jié)構(gòu)
type nodeStatsMetrics []struct {
desc *prometheus.Desc
eval func(*mem.VirtualMemoryStat) float64
valType prometheus.ValueType
}
//初始化采集器
func NewNodeCollector() prometheus.Collector {
host,_:= host.Info()
hostname = host.Hostname
return &NodeCollector{
requestDesc: prometheus.NewDesc(
"total_request_count",
"請求數(shù)",
[]string{"DYNAMIC_HOST_NAME"}, //動態(tài)標(biāo)簽名稱
prometheus.Labels{"STATIC_LABEL1":"靜態(tài)值可以放在這里","HOST_NAME":hostname}),
nodeMetrics: nodeStatsMetrics{
{
desc: prometheus.NewDesc(
"total_mem",
"內(nèi)存總量",
nil, nil),
valType: prometheus.GaugeValue,
eval: func(ms *mem.VirtualMemoryStat) float64 { return float64(ms.Total) / 1e9 },
},
{
desc: prometheus.NewDesc(
"free_mem",
"內(nèi)存空閑",
nil, nil),
valType: prometheus.GaugeValue,
eval: func(ms *mem.VirtualMemoryStat) float64 { return float64(ms.Free) / 1e9 },
},
},
goroutinesDesc:prometheus.NewDesc(
"goroutines_num",
"協(xié)程數(shù).",
nil, nil),
threadsDesc: prometheus.NewDesc(
"threads_num",
"線程數(shù)",
nil, nil),
summaryDesc: prometheus.NewDesc(
"summary_http_request_duration_seconds",
"summary類型",
[]string{"code", "method"},
prometheus.Labels{"owner": "example"},
),
histogramDesc: prometheus.NewDesc(
"histogram_http_request_duration_seconds",
"histogram類型",
[]string{"code", "method"},
prometheus.Labels{"owner": "example"},
),
}
}
// Describe returns all descriptions of the collector.
//實現(xiàn)采集器Describe接口
func (n *NodeCollector) Describe(ch chan<- *prometheus.Desc) {
ch <- n.requestDesc
for _, metric := range n.nodeMetrics {
ch <- metric.desc
}
ch <- n.goroutinesDesc
ch <- n.threadsDesc
ch <- n.summaryDesc
ch <- n.histogramDesc
}
// Collect returns the current state of all metrics of the collector.
//實現(xiàn)采集器Collect接口,真正采集動作
func (n *NodeCollector) Collect(ch chan<- prometheus.Metric) {
n.mutex.Lock()
ch <- prometheus.MustNewConstMetric(n.requestDesc,prometheus.CounterValue,0,hostname)
vm, _ := mem.VirtualMemory()
for _, metric := range n.nodeMetrics {
ch <- prometheus.MustNewConstMetric(metric.desc, metric.valType, metric.eval(vm))
}
ch <- prometheus.MustNewConstMetric(n.goroutinesDesc, prometheus.GaugeValue, float64(runtime.NumGoroutine()))
num, _ := runtime.ThreadCreateProfile(nil)
ch <- prometheus.MustNewConstMetric(n.threadsDesc, prometheus.GaugeValue, float64(num))
//模擬數(shù)據(jù)
ch <- prometheus.MustNewConstSummary(
n.summaryDesc,
4711, 403.34,
map[float64]float64{0.5: 42.3, 0.9: 323.3},
"200", "get",
)
//模擬數(shù)據(jù)
ch <- prometheus.MustNewConstHistogram(
n.histogramDesc,
4711, 403.34,
map[float64]uint64{25: 121, 50: 2403, 100: 3221, 200: 4233},
"200", "get",
)
n.mutex.Unlock()
}
執(zhí)行的結(jié)果http://127.0.0.1:8080/metrics

以上就是本文的全部內(nèi)容,希望對大家的學(xué)習(xí)有所幫助,也希望大家多多支持腳本之家。
- 使用Grafana+Prometheus監(jiān)控mysql服務(wù)性能
- 利用Prometheus與Grafana對Mysql服務(wù)器的性能監(jiān)控詳解
- SpringBoot使用prometheus監(jiān)控的示例代碼
- springboot2.X整合prometheus監(jiān)控的實例講解
- SpringBoot+Prometheus+Grafana實現(xiàn)應(yīng)用監(jiān)控和報警的詳細(xì)步驟
- Prometheus的安裝和配置教程詳解
- Prometheus 入門教程之SpringBoot 實現(xiàn)自定義指標(biāo)監(jiān)控
- springboot集成普羅米修斯(Prometheus)的方法
- 使用 prometheus python 庫編寫自定義指標(biāo)的方法(完整代碼)
- 使用prometheus統(tǒng)計MySQL自增主鍵的剩余可用百分比
- 使用Prometheus+Grafana的方法監(jiān)控Springboot應(yīng)用教程詳解
- Prometheus 監(jiān)控MySQL使用grafana展示
相關(guān)文章
Python數(shù)據(jù)類型最全知識總結(jié)
學(xué)習(xí)一門語言,往往都是從Hello World開始. 但是筆者認(rèn)為,在一個黑框框中輸出一個“你好,世界”并沒有什么了不起,要看透事物的本質(zhì),熟悉一門語言,就要了解其底層,就是我們常常說的基礎(chǔ),本篇從python中的數(shù)據(jù)類型開始,需要的朋友可以參考下2021-05-05
Pandas常用的讀取和保存數(shù)據(jù)的函數(shù)使用(csv,mysql,json,excel)
本文主要介紹了Pandas常用的讀取和保存數(shù)據(jù)的函數(shù)使用,主要包括csv,mysql,json,excel這幾種方式,具有一定的參考價值,感興趣的可以了解一下2022-01-01
Python中g(shù)etservbyport和getservbyname函數(shù)的用法大全
在Python的網(wǎng)絡(luò)編程中,getservbyport()函數(shù)和getservbyname()函數(shù)是socket模塊中的兩個函數(shù),因此在使用這兩個函數(shù)時,需要導(dǎo)入socket模塊,這篇文章主要介紹了Python中g(shù)etservbyport和getservbyname函數(shù)的用法,需要的朋友可以參考下2023-01-01
python將pandas datarame保存為txt文件的實例
今天小編就為大家分享一篇python將pandas datarame保存為txt文件的實例,具有很好的參考價值,希望對大家有所幫助。一起跟隨小編過來看看吧2019-02-02

