如何把Spring Cloud Data Flow部署在Kubernetes上
1 前言
Spring Cloud Data Flow
在本地跑得好好的,為什么要部署在Kubernetes
上呢?主要是因?yàn)?code>Kubernetes能提供更靈活的微服務(wù)管理;在集群上跑,會更安全穩(wěn)定、更合理利用物理資源。
Spring Cloud Data Flow
入門簡介請參考:Spring Cloud Data Flow初體驗(yàn),以Local模式運(yùn)行
2 部署Data Flow到Kubernetes
以簡單為原則,我們依然是基于Batch
任務(wù),不部署與Stream
相關(guān)的組件。
2.1 下載GitHub代碼
我們要基于官方提供的部署代碼進(jìn)行修改,先把官方代碼clone下來:
$ git clone https://github.com/spring-cloud/spring-cloud-dataflow.git
我們切換到最新穩(wěn)定版本的代碼版本:
$ git checkout v2.5.3.RELEASE
2.2 創(chuàng)建權(quán)限賬號
為了讓Data Flow Server
有權(quán)限來跑任務(wù),能在Kubernetes
管理資源,如新建Pod
等,所以要創(chuàng)建對應(yīng)的權(quán)限賬號。這部分代碼與源碼一致,不需要修改:
(1)server-roles.yaml
kind: Role apiVersion: rbac.authorization.k8s.io/v1 metadata: name: scdf-role rules: - apiGroups: [""] resources: ["services", "pods", "replicationcontrollers", "persistentvolumeclaims"] verbs: ["get", "list", "watch", "create", "delete", "update"] - apiGroups: [""] resources: ["configmaps", "secrets", "pods/log"] verbs: ["get", "list", "watch"] - apiGroups: ["apps"] resources: ["statefulsets", "deployments", "replicasets"] verbs: ["get", "list", "watch", "create", "delete", "update", "patch"] - apiGroups: ["extensions"] resources: ["deployments", "replicasets"] verbs: ["get", "list", "watch", "create", "delete", "update", "patch"] - apiGroups: ["batch"] resources: ["cronjobs", "jobs"] verbs: ["create", "delete", "get", "list", "watch", "update", "patch"]
(2)server-rolebinding.yaml
kind: RoleBinding apiVersion: rbac.authorization.k8s.io/v1beta1 metadata: name: scdf-rb subjects: - kind: ServiceAccount name: scdf-sa roleRef: kind: Role name: scdf-role apiGroup: rbac.authorization.k8s.io
(3)service-account.yaml
apiVersion: v1 kind: ServiceAccount metadata: name: scdf-sa
執(zhí)行以下命令,創(chuàng)建對應(yīng)賬號:
$ kubectl create -f src/kubernetes/server/server-roles.yaml $ kubectl create -f src/kubernetes/server/server-rolebinding.yaml $ kubectl create -f src/kubernetes/server/service-account.yaml
執(zhí)行完成后,可以檢查一下:
$ kubectl get role NAME AGE scdf-role 119m $ kubectl get rolebinding NAME AGE scdf-rb 117m $ kubectl get serviceAccount NAME SECRETS AGE default 1 27d scdf-sa 1 117m
2.3 部署MySQL
可以選擇其它數(shù)據(jù)庫,如果本來就有數(shù)據(jù)庫,可以不用部署,在部署Server
的時(shí)候改一下配置就好了。這里跟著官方的Guide來。為了保證部署不會因?yàn)殓R像下載問題而失敗,我提前下載了鏡像:
$ docker pull mysql:5.7.25
MySQL
的yaml
文件也不需要修改,直接執(zhí)行以下命令即可:
$ kubectl create -f src/kubernetes/mysql/
執(zhí)行完后檢查一下:
$ kubectl get Secret NAME TYPE DATA AGE default-token-jhgfp kubernetes.io/service-account-token 3 27d mysql Opaque 2 98m scdf-sa-token-wmgk6 kubernetes.io/service-account-token 3 123m $ kubectl get PersistentVolumeClaim NAME STATUS VOLUME CAPACITY ACCESS MODES STORAGECLASS AGE mysql Bound pvc-e95b495a-bea5-40ee-9606-dab8d9b0d65c 8Gi RWO hostpath 98m $ kubectl get Deployment NAME READY UP-TO-DATE AVAILABLE AGE mysql 1/1 1 1 98m $ kubectl get Service NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE mysql ClusterIP 10.98.243.130 <none> 3306/TCP 98m
2.4 部署Data Flow Server
2.4.1 修改配置文件server-config.yaml
刪除掉不用的配置,主要是Prometheus
和Grafana
的配置,結(jié)果如下:
apiVersion: v1 kind: ConfigMap metadata: name: scdf-server labels: app: scdf-server data: application.yaml: |- spring: cloud: dataflow: task: platform: kubernetes: accounts: default: limits: memory: 1024Mi datasource: url: jdbc:mysql://${MYSQL_SERVICE_HOST}:${MYSQL_SERVICE_PORT}/mysql username: root password: ${mysql-root-password} driverClassName: org.mariadb.jdbc.Driver testOnBorrow: true validationQuery: "SELECT 1"
2.4.2 修改server-svc.yaml
因?yàn)槲沂潜镜剡\(yùn)行的Kubernetes
,所以把Service
類型從LoadBalancer
改為NodePort
,并配置端口為30093
。
kind: Service apiVersion: v1 metadata: name: scdf-server labels: app: scdf-server spring-deployment-id: scdf spec: # If you are running k8s on a local dev box or using minikube, you can use type NodePort instead type: NodePort ports: - port: 80 name: scdf-server nodePort: 30093 selector: app: scdf-server
2.4.3 修改server-deployment.yaml
主要把Stream
相關(guān)的去掉,如SPRING_CLOUD_SKIPPER_CLIENT_SERVER_URI
配置項(xiàng):
apiVersion: apps/v1 kind: Deployment metadata: name: scdf-server labels: app: scdf-server spec: selector: matchLabels: app: scdf-server replicas: 1 template: metadata: labels: app: scdf-server spec: containers: - name: scdf-server image: springcloud/spring-cloud-dataflow-server:2.5.3.RELEASE imagePullPolicy: IfNotPresent volumeMounts: - name: database mountPath: /etc/secrets/database readOnly: true ports: - containerPort: 80 livenessProbe: httpGet: path: /management/health port: 80 initialDelaySeconds: 45 readinessProbe: httpGet: path: /management/info port: 80 initialDelaySeconds: 45 resources: limits: cpu: 1.0 memory: 2048Mi requests: cpu: 0.5 memory: 1024Mi env: - name: KUBERNETES_NAMESPACE valueFrom: fieldRef: fieldPath: "metadata.namespace" - name: SERVER_PORT value: '80' - name: SPRING_CLOUD_CONFIG_ENABLED value: 'false' - name: SPRING_CLOUD_DATAFLOW_FEATURES_ANALYTICS_ENABLED value: 'true' - name: SPRING_CLOUD_DATAFLOW_FEATURES_SCHEDULES_ENABLED value: 'true' - name: SPRING_CLOUD_KUBERNETES_SECRETS_ENABLE_API value: 'true' - name: SPRING_CLOUD_KUBERNETES_SECRETS_PATHS value: /etc/secrets - name: SPRING_CLOUD_KUBERNETES_CONFIG_NAME value: scdf-server - name: SPRING_CLOUD_DATAFLOW_SERVER_URI value: 'http://${SCDF_SERVER_SERVICE_HOST}:${SCDF_SERVER_SERVICE_PORT}' # Add Maven repo for metadata artifact resolution for all stream apps - name: SPRING_APPLICATION_JSON value: "{ \"maven\": { \"local-repository\": null, \"remote-repositories\": { \"repo1\": { \"url\": \"https://repo.spring.io/libs-snapshot\"} } } }" initContainers: - name: init-mysql-wait image: busybox command: ['sh', '-c', 'until nc -w3 -z mysql 3306; do echo waiting for mysql; sleep 3; done;'] serviceAccountName: scdf-sa volumes: - name: database secret: secretName: mysql
2.4.4 部署Server
完成文件修改后,就可以執(zhí)行以下命令部署了:
# 提前下載鏡像 $ docker pull springcloud/spring-cloud-dataflow-server:2.5.3.RELEASE # 部署Data Flow Server $ kubectl create -f src/kubernetes/server/server-config.yaml $ kubectl create -f src/kubernetes/server/server-svc.yaml $ kubectl create -f src/kubernetes/server/server-deployment.yaml
執(zhí)行完成,沒有錯誤就可以訪問:http://localhost:30093/dashboard/
3 運(yùn)行一個(gè)Task
檢驗(yàn)是否部署成功最簡單的方式就是跑一個(gè)任務(wù)試試。還是按以前的步驟,先注冊應(yīng)用,再定義Task
,然后執(zhí)行。
我們依舊使用官方已經(jīng)準(zhǔn)備好的應(yīng)用,但要注意這次我們選擇是的Docker
格式,而不是jar
包了。
成功執(zhí)行后,查看Kubernetes
的Dashboard
,能看到一個(gè)剛創(chuàng)建的Pod
:
4 總結(jié)
本文通過一步步講解,把Spring Cloud Data Flow
成功部署在了Kubernetes
上,并成功在Kubenetes
上跑了一個(gè)任務(wù),再也不再是Local
本地單機(jī)模式了。
到此這篇關(guān)于把Spring Cloud Data Flow部署在Kubernetes上,再跑個(gè)任務(wù)試試的文章就介紹到這了,更多相關(guān)把Spring Cloud Data Flow部署在Kubernetes上,再跑個(gè)任務(wù)試試內(nèi)容請搜索腳本之家以前的文章或繼續(xù)瀏覽下面的相關(guān)文章希望大家以后多多支持腳本之家!
相關(guān)文章
Java反射機(jī)制如何解決數(shù)據(jù)傳值為空的問題
這篇文章主要介紹了Java反射機(jī)制如何解決數(shù)據(jù)傳值為空的問題,具有很好的參考價(jià)值,希望對大家有所幫助。如有錯誤或未考慮完全的地方,望不吝賜教2022-03-03idea激活A(yù)ctivateJrebel熱部署的方法詳解
這篇文章主要介紹了idea激活A(yù)ctivateJrebel熱部署的方法,本文通過圖文并茂的形式給大家介紹的非常詳細(xì),對大家的學(xué)習(xí)或工作具有一定的參考借鑒價(jià)值,需要的朋友可以參考下2020-11-11spring?bean標(biāo)簽中的init-method和destroy-method詳解
這篇文章主要介紹了spring?bean標(biāo)簽中的init-method和destroy-method,在很多項(xiàng)目中,經(jīng)常在xml配置文件中看到init-method 或者 destroy-method ,因此整理收集下,方便以后參考和學(xué)習(xí),需要的朋友可以參考下2023-04-04java實(shí)現(xiàn)圖片上加文字水印(SpringMVC + Jsp)
這篇文章主要為大家詳細(xì)介紹了java實(shí)現(xiàn)在圖片上加文字水印的方法,水印可以是圖片或者文字,操作方便,文中示例代碼介紹的非常詳細(xì),具有一定的參考價(jià)值,感興趣的小伙伴們可以參考一下2016-05-05Spring Boot 項(xiàng)目設(shè)置網(wǎng)站圖標(biāo)的方法
這篇文章主要介紹了Spring Boot 項(xiàng)目設(shè)置網(wǎng)站圖標(biāo)的方法,本文給大家介紹的非常詳細(xì),具有一定的參考借鑒價(jià)值,需要的朋友可以參考下2020-02-02