亚洲乱码中文字幕综合,中国熟女仑乱hd,亚洲精品乱拍国产一区二区三区,一本大道卡一卡二卡三乱码全集资源,又粗又黄又硬又爽的免费视频

解決Keras TensorFlow 混編中 trainable=False設(shè)置無效問題

 更新時間:2020年06月28日 14:40:13   作者:芥末的無奈  
這篇文章主要介紹了解決Keras TensorFlow 混編中 trainable=False設(shè)置無效問題,具有很好的參考價值,希望對大家有所幫助。一起跟隨小編過來看看吧

這是最近碰到一個問題,先描述下問題:

首先我有一個訓(xùn)練好的模型(例如vgg16),我要對這個模型進(jìn)行一些改變,例如添加一層全連接層,用于種種原因,我只能用TensorFlow來進(jìn)行模型優(yōu)化,tf的優(yōu)化器,默認(rèn)情況下對所有tf.trainable_variables()進(jìn)行權(quán)值更新,問題就出在這,明明將vgg16的模型設(shè)置為trainable=False,但是tf的優(yōu)化器仍然對vgg16做權(quán)值更新

以上就是問題描述,經(jīng)過谷歌百度等等,終于找到了解決辦法,下面我們一點(diǎn)一點(diǎn)的來復(fù)原整個問題。

trainable=False 無效

首先,我們導(dǎo)入訓(xùn)練好的模型vgg16,對其設(shè)置成trainable=False

from keras.applications import VGG16
import tensorflow as tf
from keras import layers
# 導(dǎo)入模型
base_mode = VGG16(include_top=False)
# 查看可訓(xùn)練的變量
tf.trainable_variables()
[<tf.Variable 'block1_conv1/kernel:0' shape=(3, 3, 3, 64) dtype=float32_ref>,
 <tf.Variable 'block1_conv1/bias:0' shape=(64,) dtype=float32_ref>,
 <tf.Variable 'block1_conv2/kernel:0' shape=(3, 3, 64, 64) dtype=float32_ref>,
 <tf.Variable 'block1_conv2/bias:0' shape=(64,) dtype=float32_ref>,
 <tf.Variable 'block2_conv1/kernel:0' shape=(3, 3, 64, 128) dtype=float32_ref>,
 <tf.Variable 'block2_conv1/bias:0' shape=(128,) dtype=float32_ref>,
 <tf.Variable 'block2_conv2/kernel:0' shape=(3, 3, 128, 128) dtype=float32_ref>,
 <tf.Variable 'block2_conv2/bias:0' shape=(128,) dtype=float32_ref>,
 <tf.Variable 'block3_conv1/kernel:0' shape=(3, 3, 128, 256) dtype=float32_ref>,
 <tf.Variable 'block3_conv1/bias:0' shape=(256,) dtype=float32_ref>,
 <tf.Variable 'block3_conv2/kernel:0' shape=(3, 3, 256, 256) dtype=float32_ref>,
 <tf.Variable 'block3_conv2/bias:0' shape=(256,) dtype=float32_ref>,
 <tf.Variable 'block3_conv3/kernel:0' shape=(3, 3, 256, 256) dtype=float32_ref>,
 <tf.Variable 'block3_conv3/bias:0' shape=(256,) dtype=float32_ref>,
 <tf.Variable 'block4_conv1/kernel:0' shape=(3, 3, 256, 512) dtype=float32_ref>,
 <tf.Variable 'block4_conv1/bias:0' shape=(512,) dtype=float32_ref>,
 <tf.Variable 'block4_conv2/kernel:0' shape=(3, 3, 512, 512) dtype=float32_ref>,
 <tf.Variable 'block4_conv2/bias:0' shape=(512,) dtype=float32_ref>,
 <tf.Variable 'block4_conv3/kernel:0' shape=(3, 3, 512, 512) dtype=float32_ref>,
 <tf.Variable 'block4_conv3/bias:0' shape=(512,) dtype=float32_ref>,
 <tf.Variable 'block5_conv1/kernel:0' shape=(3, 3, 512, 512) dtype=float32_ref>,
 <tf.Variable 'block5_conv1/bias:0' shape=(512,) dtype=float32_ref>,
 <tf.Variable 'block5_conv2/kernel:0' shape=(3, 3, 512, 512) dtype=float32_ref>,
 <tf.Variable 'block5_conv2/bias:0' shape=(512,) dtype=float32_ref>,
 <tf.Variable 'block5_conv3/kernel:0' shape=(3, 3, 512, 512) dtype=float32_ref>,
 <tf.Variable 'block5_conv3/bias:0' shape=(512,) dtype=float32_ref>,
 <tf.Variable 'block1_conv1_1/kernel:0' shape=(3, 3, 3, 64) dtype=float32_ref>,
 <tf.Variable 'block1_conv1_1/bias:0' shape=(64,) dtype=float32_ref>,
 <tf.Variable 'block1_conv2_1/kernel:0' shape=(3, 3, 64, 64) dtype=float32_ref>,
 <tf.Variable 'block1_conv2_1/bias:0' shape=(64,) dtype=float32_ref>,
 <tf.Variable 'block2_conv1_1/kernel:0' shape=(3, 3, 64, 128) dtype=float32_ref>,
 <tf.Variable 'block2_conv1_1/bias:0' shape=(128,) dtype=float32_ref>,
 <tf.Variable 'block2_conv2_1/kernel:0' shape=(3, 3, 128, 128) dtype=float32_ref>,
 <tf.Variable 'block2_conv2_1/bias:0' shape=(128,) dtype=float32_ref>,
 <tf.Variable 'block3_conv1_1/kernel:0' shape=(3, 3, 128, 256) dtype=float32_ref>,
 <tf.Variable 'block3_conv1_1/bias:0' shape=(256,) dtype=float32_ref>,
 <tf.Variable 'block3_conv2_1/kernel:0' shape=(3, 3, 256, 256) dtype=float32_ref>,
 <tf.Variable 'block3_conv2_1/bias:0' shape=(256,) dtype=float32_ref>,
 <tf.Variable 'block3_conv3_1/kernel:0' shape=(3, 3, 256, 256) dtype=float32_ref>,
 <tf.Variable 'block3_conv3_1/bias:0' shape=(256,) dtype=float32_ref>,
 <tf.Variable 'block4_conv1_1/kernel:0' shape=(3, 3, 256, 512) dtype=float32_ref>,
 <tf.Variable 'block4_conv1_1/bias:0' shape=(512,) dtype=float32_ref>,
 <tf.Variable 'block4_conv2_1/kernel:0' shape=(3, 3, 512, 512) dtype=float32_ref>,
 <tf.Variable 'block4_conv2_1/bias:0' shape=(512,) dtype=float32_ref>,
 <tf.Variable 'block4_conv3_1/kernel:0' shape=(3, 3, 512, 512) dtype=float32_ref>,
 <tf.Variable 'block4_conv3_1/bias:0' shape=(512,) dtype=float32_ref>,
 <tf.Variable 'block5_conv1_1/kernel:0' shape=(3, 3, 512, 512) dtype=float32_ref>,
 <tf.Variable 'block5_conv1_1/bias:0' shape=(512,) dtype=float32_ref>,
 <tf.Variable 'block5_conv2_1/kernel:0' shape=(3, 3, 512, 512) dtype=float32_ref>,
 <tf.Variable 'block5_conv2_1/bias:0' shape=(512,) dtype=float32_ref>,
 <tf.Variable 'block5_conv3_1/kernel:0' shape=(3, 3, 512, 512) dtype=float32_ref>,
 <tf.Variable 'block5_conv3_1/bias:0' shape=(512,) dtype=float32_ref>]
# 設(shè)置 trainable=False
# base_mode.trainable = False似乎也是可以的
for layer in base_mode.layers:
  layer.trainable = False

設(shè)置好trainable=False后,再次查看可訓(xùn)練的變量,發(fā)現(xiàn)并沒有變化,也就是說設(shè)置無效

# 再次查看可訓(xùn)練的變量
tf.trainable_variables()

[<tf.Variable 'block1_conv1/kernel:0' shape=(3, 3, 3, 64) dtype=float32_ref>,
 <tf.Variable 'block1_conv1/bias:0' shape=(64,) dtype=float32_ref>,
 <tf.Variable 'block1_conv2/kernel:0' shape=(3, 3, 64, 64) dtype=float32_ref>,
 <tf.Variable 'block1_conv2/bias:0' shape=(64,) dtype=float32_ref>,
 <tf.Variable 'block2_conv1/kernel:0' shape=(3, 3, 64, 128) dtype=float32_ref>,
 <tf.Variable 'block2_conv1/bias:0' shape=(128,) dtype=float32_ref>,
 <tf.Variable 'block2_conv2/kernel:0' shape=(3, 3, 128, 128) dtype=float32_ref>,
 <tf.Variable 'block2_conv2/bias:0' shape=(128,) dtype=float32_ref>,
 <tf.Variable 'block3_conv1/kernel:0' shape=(3, 3, 128, 256) dtype=float32_ref>,
 <tf.Variable 'block3_conv1/bias:0' shape=(256,) dtype=float32_ref>,
 <tf.Variable 'block3_conv2/kernel:0' shape=(3, 3, 256, 256) dtype=float32_ref>,
 <tf.Variable 'block3_conv2/bias:0' shape=(256,) dtype=float32_ref>,
 <tf.Variable 'block3_conv3/kernel:0' shape=(3, 3, 256, 256) dtype=float32_ref>,
 <tf.Variable 'block3_conv3/bias:0' shape=(256,) dtype=float32_ref>,
 <tf.Variable 'block4_conv1/kernel:0' shape=(3, 3, 256, 512) dtype=float32_ref>,
 <tf.Variable 'block4_conv1/bias:0' shape=(512,) dtype=float32_ref>,
 <tf.Variable 'block4_conv2/kernel:0' shape=(3, 3, 512, 512) dtype=float32_ref>,
 <tf.Variable 'block4_conv2/bias:0' shape=(512,) dtype=float32_ref>,
 <tf.Variable 'block4_conv3/kernel:0' shape=(3, 3, 512, 512) dtype=float32_ref>,
 <tf.Variable 'block4_conv3/bias:0' shape=(512,) dtype=float32_ref>,
 <tf.Variable 'block5_conv1/kernel:0' shape=(3, 3, 512, 512) dtype=float32_ref>,
 <tf.Variable 'block5_conv1/bias:0' shape=(512,) dtype=float32_ref>,
 <tf.Variable 'block5_conv2/kernel:0' shape=(3, 3, 512, 512) dtype=float32_ref>,
 <tf.Variable 'block5_conv2/bias:0' shape=(512,) dtype=float32_ref>,
 <tf.Variable 'block5_conv3/kernel:0' shape=(3, 3, 512, 512) dtype=float32_ref>,
 <tf.Variable 'block5_conv3/bias:0' shape=(512,) dtype=float32_ref>,
 <tf.Variable 'block1_conv1_1/kernel:0' shape=(3, 3, 3, 64) dtype=float32_ref>,
 <tf.Variable 'block1_conv1_1/bias:0' shape=(64,) dtype=float32_ref>,
 <tf.Variable 'block1_conv2_1/kernel:0' shape=(3, 3, 64, 64) dtype=float32_ref>,
 <tf.Variable 'block1_conv2_1/bias:0' shape=(64,) dtype=float32_ref>,
 <tf.Variable 'block2_conv1_1/kernel:0' shape=(3, 3, 64, 128) dtype=float32_ref>,
 <tf.Variable 'block2_conv1_1/bias:0' shape=(128,) dtype=float32_ref>,
 <tf.Variable 'block2_conv2_1/kernel:0' shape=(3, 3, 128, 128) dtype=float32_ref>,
 <tf.Variable 'block2_conv2_1/bias:0' shape=(128,) dtype=float32_ref>,
 <tf.Variable 'block3_conv1_1/kernel:0' shape=(3, 3, 128, 256) dtype=float32_ref>,
 <tf.Variable 'block3_conv1_1/bias:0' shape=(256,) dtype=float32_ref>,
 <tf.Variable 'block3_conv2_1/kernel:0' shape=(3, 3, 256, 256) dtype=float32_ref>,
 <tf.Variable 'block3_conv2_1/bias:0' shape=(256,) dtype=float32_ref>,
 <tf.Variable 'block3_conv3_1/kernel:0' shape=(3, 3, 256, 256) dtype=float32_ref>,
 <tf.Variable 'block3_conv3_1/bias:0' shape=(256,) dtype=float32_ref>,
 <tf.Variable 'block4_conv1_1/kernel:0' shape=(3, 3, 256, 512) dtype=float32_ref>,
 <tf.Variable 'block4_conv1_1/bias:0' shape=(512,) dtype=float32_ref>,
 <tf.Variable 'block4_conv2_1/kernel:0' shape=(3, 3, 512, 512) dtype=float32_ref>,
 <tf.Variable 'block4_conv2_1/bias:0' shape=(512,) dtype=float32_ref>,
 <tf.Variable 'block4_conv3_1/kernel:0' shape=(3, 3, 512, 512) dtype=float32_ref>,
 <tf.Variable 'block4_conv3_1/bias:0' shape=(512,) dtype=float32_ref>,
 <tf.Variable 'block5_conv1_1/kernel:0' shape=(3, 3, 512, 512) dtype=float32_ref>,
 <tf.Variable 'block5_conv1_1/bias:0' shape=(512,) dtype=float32_ref>,
 <tf.Variable 'block5_conv2_1/kernel:0' shape=(3, 3, 512, 512) dtype=float32_ref>,
 <tf.Variable 'block5_conv2_1/bias:0' shape=(512,) dtype=float32_ref>,
 <tf.Variable 'block5_conv3_1/kernel:0' shape=(3, 3, 512, 512) dtype=float32_ref>,
 <tf.Variable 'block5_conv3_1/bias:0' shape=(512,) dtype=float32_ref>]

解決的辦法

解決的辦法就是在導(dǎo)入模型的時候建立一個variable_scope,將需要訓(xùn)練的變量放在另一個variable_scope,然后通過tf.get_collection獲取需要訓(xùn)練的變量,最后通過tf的優(yōu)化器中var_list指定需要訓(xùn)練的變量

from keras import models
with tf.variable_scope('base_model'):
  base_model = VGG16(include_top=False, input_shape=(224,224,3))
with tf.variable_scope('xxx'):
  model = models.Sequential()
  model.add(base_model)
  model.add(layers.Flatten())
  model.add(layers.Dense(10))

# 獲取需要訓(xùn)練的變量
trainable_var = tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES, 'xxx')
trainable_var

[<tf.Variable 'xxx_2/dense_1/kernel:0' shape=(25088, 10) dtype=float32_ref>,
<tf.Variable 'xxx_2/dense_1/bias:0' shape=(10,) dtype=float32_ref>]

# 定義tf優(yōu)化器進(jìn)行訓(xùn)練,這里假設(shè)有一個loss
loss = model.output / 2; # 隨便定義的,方便演示
train_step = tf.train.AdamOptimizer().minimize(loss, var_list=trainable_var)

總結(jié)

在keras與TensorFlow混編中,keras中設(shè)置trainable=False對于TensorFlow而言并不起作用

解決的辦法就是通過variable_scope對變量進(jìn)行區(qū)分,在通過tf.get_collection來獲取需要訓(xùn)練的變量,最后通過tf優(yōu)化器中var_list指定訓(xùn)練

以上這篇解決Keras TensorFlow 混編中 trainable=False設(shè)置無效問題就是小編分享給大家的全部內(nèi)容了,希望能給大家一個參考,也希望大家多多支持腳本之家。

相關(guān)文章

  • Python在cmd上打印彩色文字實現(xiàn)過程詳解

    Python在cmd上打印彩色文字實現(xiàn)過程詳解

    這篇文章主要介紹了Python在cmd上打印彩色文字實現(xiàn)過程詳解,文中通過示例代碼介紹的非常詳細(xì),對大家的學(xué)習(xí)或者工作具有一定的參考學(xué)習(xí)價值,需要的朋友可以參考下
    2019-08-08
  • Python Numpy庫安裝與基本操作示例

    Python Numpy庫安裝與基本操作示例

    這篇文章主要介紹了Python Numpy庫安裝與基本操作,簡單介紹了Numpy庫的基本功能、并結(jié)合實例形式分析了基于Numpy庫的數(shù)組與矩陣相關(guān)操作技巧,需要的朋友可以參考下
    2019-01-01
  • python 創(chuàng)建一個空dataframe 然后添加行數(shù)據(jù)的實例

    python 創(chuàng)建一個空dataframe 然后添加行數(shù)據(jù)的實例

    今天小編就為大家分享一篇python 創(chuàng)建一個空dataframe 然后添加行數(shù)據(jù)的實例,具有很好的參考價值,希望對大家有所幫助。一起跟隨小編過來看看吧
    2018-06-06
  • matplotlib命令與格式之tick坐標(biāo)軸日期格式(設(shè)置日期主副刻度)

    matplotlib命令與格式之tick坐標(biāo)軸日期格式(設(shè)置日期主副刻度)

    這篇文章主要介紹了matplotlib命令與格式之tick坐標(biāo)軸日期格式(設(shè)置日期主副刻度),文中通過示例代碼介紹的非常詳細(xì),對大家的學(xué)習(xí)或者工作具有一定的參考學(xué)習(xí)價值,需要的朋友們下面隨著小編來一起學(xué)習(xí)學(xué)習(xí)吧
    2019-08-08
  • 淺談python的輸入輸出,注釋,基本數(shù)據(jù)類型

    淺談python的輸入輸出,注釋,基本數(shù)據(jù)類型

    這篇文章主要介紹了python的輸入輸出,注釋,基本數(shù)據(jù)類型,文中通過示例代碼介紹的非常詳細(xì),對大家的學(xué)習(xí)或者工作具有一定的參考學(xué)習(xí)價值,需要的朋友們下面隨著小編來一起學(xué)習(xí)學(xué)習(xí)吧
    2019-04-04
  • Python Shiny庫創(chuàng)建交互式Web應(yīng)用及高級功能案例

    Python Shiny庫創(chuàng)建交互式Web應(yīng)用及高級功能案例

    Shiny是一個基于Python的交互式Web應(yīng)用框架,專注于簡化Web應(yīng)用的開發(fā)流程,本文將深入探討Shiny庫的基本用法、高級功能以及實際應(yīng)用案例,以幫助開發(fā)者充分發(fā)揮Shiny在Web應(yīng)用開發(fā)中的優(yōu)勢
    2023-12-12
  • pyinstaller打包找不到文件的問題解決

    pyinstaller打包找不到文件的問題解決

    這篇文章主要介紹了pyinstaller打包找不到文件的問題解決,文中通過示例代碼介紹的非常詳細(xì),對大家的學(xué)習(xí)或者工作具有一定的參考學(xué)習(xí)價值,需要的朋友們下面隨著小編來一起學(xué)習(xí)學(xué)習(xí)吧
    2020-04-04
  • python經(jīng)典百題之static定義靜態(tài)變量的三種方法

    python經(jīng)典百題之static定義靜態(tài)變量的三種方法

    日常腳本編寫過程中時常會用到python的靜態(tài)方法、實例方法、類方法,下面這篇文章主要給大家介紹了關(guān)于python經(jīng)典百題之static定義靜態(tài)變量的三種方法,需要的朋友可以參考下
    2024-09-09
  • python3使用SMTP發(fā)送簡單文本郵件

    python3使用SMTP發(fā)送簡單文本郵件

    這篇文章主要為大家詳細(xì)介紹了python3使用SMTP發(fā)送簡單文本郵件,文中示例代碼介紹的非常詳細(xì),具有一定的參考價值,感興趣的小伙伴們可以參考一下
    2018-06-06
  • python實現(xiàn)學(xué)員管理系統(tǒng)

    python實現(xiàn)學(xué)員管理系統(tǒng)

    這篇文章主要為大家詳細(xì)介紹了python實現(xiàn)學(xué)員管理系統(tǒng),文中示例代碼介紹的非常詳細(xì),具有一定的參考價值,感興趣的小伙伴們可以參考一下
    2019-02-02

最新評論