Tensorflow之MNIST CNN實(shí)現(xiàn)并保存、加載模型
本文實(shí)例為大家分享了Tensorflow之MNIST CNN實(shí)現(xiàn)并保存、加載模型的具體代碼,供大家參考,具體內(nèi)容如下
廢話不說(shuō),直接上代碼
# TensorFlow and tf.keras
import tensorflow as tf
from tensorflow import keras
# Helper libraries
import numpy as np
import matplotlib.pyplot as plt
import os
#download the data
mnist = keras.datasets.mnist
(train_images, train_labels), (test_images, test_labels) = mnist.load_data()
class_names = ['0', '1', '2', '3', '4', '5', '6', '7', '8', '9']
train_images = train_images / 255.0
test_images = test_images / 255.0
def create_model():
# It's necessary to give the input_shape,or it will fail when you load the model
# The error will be like : You are trying to load the 4 layer models to the 0 layer
model = keras.Sequential([
keras.layers.Conv2D(32,[5,5], activation=tf.nn.relu,input_shape = (28,28,1)),
keras.layers.MaxPool2D(),
keras.layers.Conv2D(64,[7,7], activation=tf.nn.relu),
keras.layers.MaxPool2D(),
keras.layers.Flatten(),
keras.layers.Dense(576, activation=tf.nn.relu),
keras.layers.Dense(10, activation=tf.nn.softmax)
])
model.compile(optimizer=tf.train.AdamOptimizer(),
loss='sparse_categorical_crossentropy',
metrics=['accuracy'])
return model
#reshape the shape before using it, for that the input of cnn is 4 dimensions
train_images = np.reshape(train_images,[-1,28,28,1])
test_images = np.reshape(test_images,[-1,28,28,1])
#train
model = create_model()
model.fit(train_images, train_labels, epochs=4)
#save the model
model.save('my_model.h5')
#Evaluate
test_loss, test_acc = model.evaluate(test_images, test_labels,verbose = 0)
print('Test accuracy:', test_acc)
模型保存后,自己手寫了幾張圖片,放在文件夾C:\pythonp\testdir2下,開(kāi)始測(cè)試
#Load the model
new_model = keras.models.load_model('my_model.h5')
new_model.compile(optimizer=tf.train.AdamOptimizer(),
loss='sparse_categorical_crossentropy',
metrics=['accuracy'])
new_model.summary()
#Evaluate
# test_loss, test_acc = new_model.evaluate(test_images, test_labels)
# print('Test accuracy:', test_acc)
#Predicte
mypath = 'C:\\pythonp\\testdir2'
def getimg(mypath):
listdir = os.listdir(mypath)
imgs = []
for p in listdir:
img = plt.imread(mypath+'\\'+p)
# I save the picture that I draw myself under Windows, but the saved picture's
# encode style is just opposite with the experiment data, so I transfer it with
# this line.
img = np.abs(img/255-1)
imgs.append(img[:,:,0])
return np.array(imgs),len(imgs)
imgs = getimg(mypath)
test_images = np.reshape(imgs[0],[-1,28,28,1])
predictions = new_model.predict(test_images)
plt.figure()
for i in range(imgs[1]):
c = np.argmax(predictions[i])
plt.subplot(3,3,i+1)
plt.xticks([])
plt.yticks([])
plt.imshow(test_images[i,:,:,0])
plt.title(class_names[c])
plt.show()
測(cè)試結(jié)果

自己手寫的圖片截的時(shí)候要注意,空白部分盡量不要太大,否則測(cè)試結(jié)果就呵呵了
以上就是本文的全部?jī)?nèi)容,希望對(duì)大家的學(xué)習(xí)有所幫助,也希望大家多多支持腳本之家。
相關(guān)文章
詳解python tkinter包獲取本地絕對(duì)路徑(以獲取圖片并展示)
這篇文章主要給大家介紹了關(guān)于python tkinter包獲取本地絕對(duì)路徑(以獲取圖片并展示)的相關(guān)資料,文中通過(guò)示例代碼介紹的非常詳細(xì),對(duì)大家的學(xué)習(xí)或者工作具有一定的參考學(xué)習(xí)價(jià)值,需要的朋友們下面隨著小編來(lái)一起學(xué)習(xí)學(xué)習(xí)吧2020-09-09
Python中網(wǎng)絡(luò)請(qǐng)求中Retry策略實(shí)現(xiàn)方式
這篇文章主要介紹了Python中網(wǎng)絡(luò)請(qǐng)求中Retry策略實(shí)現(xiàn)方式,具有很好的參考價(jià)值,希望對(duì)大家有所幫助,如有錯(cuò)誤或未考慮完全的地方,望不吝賜教2024-06-06
python安裝pandas庫(kù)不成功原因分析及解決辦法
Pandas是python中非常常用的數(shù)據(jù)分析庫(kù),在數(shù)據(jù)分析、機(jī)器學(xué)習(xí)、深度學(xué)習(xí)等領(lǐng)域經(jīng)常被使用,下面這篇文章主要給大家介紹了關(guān)于python安裝pandas庫(kù)不成功原因分析及解決辦法的相關(guān)資料2023-11-11
Pandas中DataFrame對(duì)象轉(zhuǎn)置(交換行列)
本文主要介紹了Pandas中DataFrame對(duì)象轉(zhuǎn)置(交換行列),文中通過(guò)示例代碼介紹的非常詳細(xì),對(duì)大家的學(xué)習(xí)或者工作具有一定的參考學(xué)習(xí)價(jià)值,需要的朋友們下面隨著小編來(lái)一起學(xué)習(xí)學(xué)習(xí)吧2023-02-02
python使用bs4爬取boss直聘靜態(tài)頁(yè)面
這篇文章主要介紹了python如何使用bs4爬取boss直聘靜態(tài)頁(yè)面,幫助大家更好的理解和學(xué)習(xí)爬蟲,感興趣的朋友可以了解下2020-10-10
python實(shí)現(xiàn)簡(jiǎn)單點(diǎn)對(duì)點(diǎn)(p2p)聊天
這篇文章主要為大家詳細(xì)介紹了python實(shí)現(xiàn)簡(jiǎn)單點(diǎn)對(duì)點(diǎn)p2p聊天,具有一定的參考價(jià)值,感興趣的小伙伴們可以參考一下2017-09-09
python字符串拼接.join()和拆分.split()詳解
這篇文章主要為大家介紹了python字符串拼接.join()和拆分.split(),具有一定的參考價(jià)值,感興趣的小伙伴們可以參考一下,希望能夠給你帶來(lái)幫助2021-11-11

