亚洲乱码中文字幕综合,中国熟女仑乱hd,亚洲精品乱拍国产一区二区三区,一本大道卡一卡二卡三乱码全集资源,又粗又黄又硬又爽的免费视频

C++求所有頂點(diǎn)之間的最短路徑(用Floyd算法)

 更新時(shí)間:2020年04月26日 11:14:56   作者:ChanJose  
這篇文章主要為大家詳細(xì)介紹了C++求所有頂點(diǎn)之間的最短路徑,文中示例代碼介紹的非常詳細(xì),具有一定的參考價(jià)值,感興趣的小伙伴們可以參考一下

本文實(shí)例為大家分享了C++所有頂點(diǎn)之間最短路徑的具體代碼,供大家參考,具體內(nèi)容如下

一、思路: 不能出現(xiàn)負(fù)權(quán)值的邊

用Floyd算法,總的執(zhí)行時(shí)間為O(n的3次方)

k從頂點(diǎn)0一直到頂點(diǎn)n-1,

如果,有頂點(diǎn)i到頂點(diǎn)j之間繞過k,使得兩頂點(diǎn)間的路徑更短,即dist[i][k] + dist[k][j] < dist[i][j],則修改:dist[i][j]

如:(1)當(dāng)k=0時(shí),

頂點(diǎn)2繞過頂點(diǎn)0到達(dá)頂點(diǎn)1,使得路徑為:3+1 < dist[2][1],所以,要修改dist[2][1]=4,同時(shí)要修改path[2][1]=path[0][1];

頂點(diǎn)2繞過頂點(diǎn)0到達(dá)頂點(diǎn)3,使得路徑為:3+4 < dist[2][3],所以,要修改dist[2][1]=7,同時(shí)要修改path[2][3]=path[0][3];

(2)當(dāng)k=1時(shí),

頂點(diǎn)2繞過頂點(diǎn)1到達(dá)頂點(diǎn)3,使得路徑為:2->0->1->3,3+1+2=6 <dist[2][3]=7,所以,要修改dist[2][3]=6,同時(shí)要修改path[2][3]=path[1][3];

一直重復(fù)上面步驟,直到k=6

二、實(shí)現(xiàn)程序:

1.Graph.h:有向圖

#ifndef Graph_h
#define Graph_h
#include <iostream>
using namespace std;
 
const int DefaultVertices = 30;
 
template <class T, class E>
struct Edge { // 邊結(jié)點(diǎn)的定義
 int dest; // 邊的另一頂點(diǎn)位置
 E cost; // 表上的權(quán)值
 Edge<T, E> *link; // 下一條邊鏈指針
};
 
template <class T, class E>
struct Vertex { // 頂點(diǎn)的定義
 T data; // 頂點(diǎn)的名字
 Edge<T, E> *adj; // 邊鏈表的頭指針
};
 
template <class T, class E>
class Graphlnk {
public:
 const E maxValue = 100000; // 代表無窮大的值(=∞)
 Graphlnk(int sz=DefaultVertices); // 構(gòu)造函數(shù)
 ~Graphlnk(); // 析構(gòu)函數(shù)
 void inputGraph(); // 建立鄰接表表示的圖
 void outputGraph(); // 輸出圖中的所有頂點(diǎn)和邊信息
 T getValue(int i); // 取位置為i的頂點(diǎn)中的值
 E getWeight(int v1, int v2); // 返回邊(v1, v2)上的權(quán)值
 bool insertVertex(const T& vertex); // 插入頂點(diǎn)
 bool insertEdge(int v1, int v2, E weight); // 插入邊
 bool removeVertex(int v); // 刪除頂點(diǎn)
 bool removeEdge(int v1, int v2); // 刪除邊
 int getFirstNeighbor(int v); // 取頂點(diǎn)v的第一個(gè)鄰接頂點(diǎn)
 int getNextNeighbor(int v,int w); // 取頂點(diǎn)v的鄰接頂點(diǎn)w的下一鄰接頂點(diǎn)
 int getVertexPos(const T vertex); // 給出頂點(diǎn)vertex在圖中的位置
 int numberOfVertices(); // 當(dāng)前頂點(diǎn)數(shù)
private:
 int maxVertices; // 圖中最大的頂點(diǎn)數(shù)
 int numEdges; // 當(dāng)前邊數(shù)
 int numVertices; // 當(dāng)前頂點(diǎn)數(shù)
 Vertex<T, E> * nodeTable; // 頂點(diǎn)表(各邊鏈表的頭結(jié)點(diǎn))
};
 
// 構(gòu)造函數(shù):建立一個(gè)空的鄰接表
template <class T, class E>
Graphlnk<T, E>::Graphlnk(int sz) {
 maxVertices = sz;
 numVertices = 0;
 numEdges = 0;
 nodeTable = new Vertex<T, E>[maxVertices]; // 創(chuàng)建頂點(diǎn)表數(shù)組
 if(nodeTable == NULL) {
  cerr << "存儲(chǔ)空間分配錯(cuò)誤!" << endl;
  exit(1);
 }
 for(int i = 0; i < maxVertices; i++)
  nodeTable[i].adj = NULL;
}
 
// 析構(gòu)函數(shù)
template <class T, class E>
Graphlnk<T, E>::~Graphlnk() {
 // 刪除各邊鏈表中的結(jié)點(diǎn)
 for(int i = 0; i < numVertices; i++) {
  Edge<T, E> *p = nodeTable[i].adj; // 找到其對(duì)應(yīng)鏈表的首結(jié)點(diǎn)
  while(p != NULL) { // 不斷地刪除第一個(gè)結(jié)點(diǎn)
   nodeTable[i].adj = p->link;
   delete p;
   p = nodeTable[i].adj;
  }
 }
 delete []nodeTable; // 刪除頂點(diǎn)表數(shù)組
}
 
// 建立鄰接表表示的圖
template <class T, class E>
void Graphlnk<T, E>::inputGraph() {
 int n, m; // 存儲(chǔ)頂點(diǎn)樹和邊數(shù)
 int i, j, k;
 T e1, e2; // 頂點(diǎn)
 E weight; // 邊的權(quán)值
 
 cout << "請(qǐng)輸入頂點(diǎn)數(shù)和邊數(shù):" << endl;
 cin >> n >> m;
 cout << "請(qǐng)輸入各頂點(diǎn):" << endl;
 for(i = 0; i < n; i++) {
  cin >> e1;
  insertVertex(e1); // 插入頂點(diǎn)
 }
 
 cout << "請(qǐng)輸入圖的各邊的信息:" << endl;
 i = 0;
 while(i < m) {
  cin >> e1 >> e2 >> weight;
  j = getVertexPos(e1);
  k = getVertexPos(e2);
  if(j == -1 || k == -1)
   cout << "邊兩端點(diǎn)信息有誤,請(qǐng)重新輸入!" << endl;
  else {
   insertEdge(j, k, weight); // 插入邊
   i++;
  }
 } // while
}
 
// 輸出有向圖中的所有頂點(diǎn)和邊信息
template <class T, class E>
void Graphlnk<T, E>::outputGraph() {
 int n, m, i;
 T e1, e2; // 頂點(diǎn)
 E weight; // 權(quán)值
 Edge<T, E> *p;
 
 n = numVertices;
 m = numEdges;
 cout << "圖中的頂點(diǎn)數(shù)為" << n << ",邊數(shù)為" << m << endl;
 for(i = 0; i < n; i++) {
  p = nodeTable[i].adj;
  while(p != NULL) {
   e1 = getValue(i); // 有向邊<i, p->dest>
   e2 = getValue(p->dest);
   weight = p->cost;
   cout << "<" << e1 << ", " << e2 << ", " << weight << ">" << endl;
   p = p->link; // 指向下一個(gè)鄰接頂點(diǎn)
  }
 }
}
 
// 取位置為i的頂點(diǎn)中的值
template <class T, class E>
T Graphlnk<T, E>::getValue(int i) {
 if(i >= 0 && i < numVertices)
  return nodeTable[i].data;
 return NULL;
}
 
// 返回邊(v1, v2)上的權(quán)值
template <class T, class E>
E Graphlnk<T, E>::getWeight(int v1, int v2) {
 if(v1 != -1 && v2 != -1) {
  if(v1 == v2) // 說明是同一頂點(diǎn)
   return 0;
  Edge<T , E> *p = nodeTable[v1].adj; // v1的第一條關(guān)聯(lián)的邊
  while(p != NULL && p->dest != v2) { // 尋找鄰接頂點(diǎn)v2
   p = p->link;
  }
  if(p != NULL)
   return p->cost;
 }
 return maxValue; // 邊(v1, v2)不存在,就存放無窮大的值
}
 
// 插入頂點(diǎn)
template <class T, class E>
bool Graphlnk<T, E>::insertVertex(const T& vertex) {
 if(numVertices == maxVertices) // 頂點(diǎn)表滿,不能插入
  return false;
 nodeTable[numVertices].data = vertex; // 插入在表的最后
 numVertices++;
 return true;
}
 
// 插入邊
template <class T, class E>
bool Graphlnk<T, E>::insertEdge(int v1, int v2, E weight) {
 if(v1 == v2) // 同一頂點(diǎn)不插入
  return false;
 if(v1 >= 0 && v1 < numVertices && v2 >= 0 && v2 < numVertices) {
  Edge<T, E> *p = nodeTable[v1].adj; // v1對(duì)應(yīng)的邊鏈表頭指針
  while(p != NULL && p->dest != v2) // 尋找鄰接頂點(diǎn)v2
   p = p->link;
  if(p != NULL) // 已存在該邊,不插入
   return false;
  p = new Edge<T, E>; // 創(chuàng)建新結(jié)點(diǎn)
  p->dest = v2;
  p->cost = weight;
  p->link = nodeTable[v1].adj; // 鏈入v1邊鏈表
  nodeTable[v1].adj = p;
  numEdges++;
  return true;
 }
 return false;
}
 
// 有向圖刪除頂點(diǎn)較麻煩
template <class T, class E>
bool Graphlnk<T, E>::removeVertex(int v) {
 if(numVertices == 1 || v < 0 || v > numVertices)
  return false; // 表空或頂點(diǎn)號(hào)超出范圍
 
 Edge<T, E> *p, *s;
 // 1.清除頂點(diǎn)v的邊鏈表結(jié)點(diǎn)w 邊<v,w>
 while(nodeTable[v].adj != NULL) {
  p = nodeTable[v].adj;
  nodeTable[v].adj = p->link;
  delete p;
  numEdges--; // 與頂點(diǎn)v相關(guān)聯(lián)的邊數(shù)減1
 } // while結(jié)束
 // 2.清除<w, v>,與v有關(guān)的邊
 for(int i = 0; i < numVertices; i++) {
  if(i != v) { // 不是當(dāng)前頂點(diǎn)v
   s = NULL;
   p = nodeTable[i].adj;
   while(p != NULL && p->dest != v) {// 在頂點(diǎn)i的鏈表中找v的頂點(diǎn)
    s = p;
    p = p->link; // 往后找
   }
   if(p != NULL) { // 找到了v的結(jié)點(diǎn)
    if(s == NULL) { // 說明p是nodeTable[i].adj
     nodeTable[i].adj = p->link;
    } else {
     s->link = p->link; // 保存p的下一個(gè)頂點(diǎn)信息
    }
    delete p; // 刪除結(jié)點(diǎn)p
    numEdges--; // 與頂點(diǎn)v相關(guān)聯(lián)的邊數(shù)減1
   }
  }
 }
 numVertices--; // 圖的頂點(diǎn)個(gè)數(shù)減1
 nodeTable[v].data = nodeTable[numVertices].data; // 填補(bǔ),此時(shí)numVertices,比原來numVertices小1,所以,這里不需要numVertices-1
 nodeTable[v].adj = nodeTable[numVertices].adj;
 // 3.要將填補(bǔ)的頂點(diǎn)對(duì)應(yīng)的位置改寫
 for(int i = 0; i < numVertices; i++) {
  p = nodeTable[i].adj;
  while(p != NULL && p->dest != numVertices) // 在頂點(diǎn)i的鏈表中找numVertices的頂點(diǎn)
   p = p->link; // 往后找
  if(p != NULL) // 找到了numVertices的結(jié)點(diǎn)
   p->dest = v; // 將鄰接頂點(diǎn)numVertices改成v
 }
 return true;
}
 
// 刪除邊
template <class T, class E>
bool Graphlnk<T, E>::removeEdge(int v1, int v2) {
 if(v1 != -1 && v2 != -1) {
  Edge<T, E> * p = nodeTable[v1].adj, *q = NULL;
  while(p != NULL && p->dest != v2) { // v1對(duì)應(yīng)邊鏈表中找被刪除邊
   q = p;
   p = p->link;
  }
  if(p != NULL) { // 找到被刪除邊結(jié)點(diǎn)
   if(q == NULL) // 刪除的結(jié)點(diǎn)是邊鏈表的首結(jié)點(diǎn)
    nodeTable[v1].adj = p->link;
   else
    q->link = p->link; // 不是,重新鏈接
   delete p;
   return true;
  }
 }
 return false; // 沒有找到結(jié)點(diǎn)
}
 
// 取頂點(diǎn)v的第一個(gè)鄰接頂點(diǎn)
template <class T, class E>
int Graphlnk<T, E>::getFirstNeighbor(int v) {
 if(v != -1) {
  Edge<T, E> *p = nodeTable[v].adj; // 對(duì)應(yīng)鏈表第一個(gè)邊結(jié)點(diǎn)
  if(p != NULL) // 存在,返回第一個(gè)鄰接頂點(diǎn)
   return p->dest;
 }
 return -1; // 第一個(gè)鄰接頂點(diǎn)不存在
}
 
// 取頂點(diǎn)v的鄰接頂點(diǎn)w的下一鄰接頂點(diǎn)
template <class T, class E>
int Graphlnk<T, E>::getNextNeighbor(int v,int w) {
 if(v != -1) {
  Edge<T, E> *p = nodeTable[v].adj; // 對(duì)應(yīng)鏈表第一個(gè)邊結(jié)點(diǎn)
  while(p != NULL && p->dest != w) // 尋找鄰接頂點(diǎn)w
   p = p->link;
  if(p != NULL && p->link != NULL)
   return p->link->dest; // 返回下一個(gè)鄰接頂點(diǎn)
 }
 return -1; // 下一個(gè)鄰接頂點(diǎn)不存在
}
 
// 給出頂點(diǎn)vertex在圖中的位置
template <class T, class E>
int Graphlnk<T, E>::getVertexPos(const T vertex) {
 for(int i = 0; i < numVertices; i++)
  if(nodeTable[i].data == vertex)
   return i;
 return -1;
}
 
// 當(dāng)前頂點(diǎn)數(shù)
template <class T, class E>
int Graphlnk<T, E>::numberOfVertices() {
 return numVertices;
}
 
#endif /* Graph_h */

2.Floyd.h

#ifndef Floyd_h
#define Floyd_h
#include "Graph.h"
#include <stack>
 
// Floyd算法
template <class T, class E>
void Floyd(Graphlnk<T, E> &G, E dist[][DefaultVertices], int path[][DefaultVertices]) {
 // Graph是一個(gè)帶權(quán)有向圖,dist[]是當(dāng)前求到的從頂點(diǎn)v到頂點(diǎn)j的最短路徑長度,同時(shí)用數(shù)組
 // path[]存放求到的最短路徑
 // dist[i][j]表示頂點(diǎn)i到頂點(diǎn)j的最短路徑的權(quán)值
 int n = G.numberOfVertices(); // 頂點(diǎn)數(shù)
 int i, j, k;
 
 for(i = 0; i < n; i++) { // 矩陣dist與path初始化
  for(j = 0; j < n; j++) {
   dist[i][j] = G.getWeight(i, j);
   if(i != j && dist[i][j] < G.maxValue)
    path[i][j] = i; // 從頂點(diǎn)i到j(luò)的最短路徑初始化,j的上一個(gè)頂點(diǎn)為i
   else
    path[i][j] = -1; // 沒有<i,j>的邊
  }
 }
 for(k = 0; k < n; k++) { // 有n個(gè)頂點(diǎn),需要進(jìn)行n次更新dist(k)和path(k)
  for(i = 0; i < n; i++) {
   for(j = 0; j < n; j++) {
    if(dist[i][k] + dist[k][j] < dist[i][j]) {
     dist[i][j] = dist[i][k] + dist[k][j];
     path[i][j] = path[k][j]; // 縮短路徑長度,繞過k到j(luò)
    }
   }
  }
 }
}
 
// 從path數(shù)組讀取最短路徑的算法
template <class T, class E>
void printShortestPath(Graphlnk<T, E> &G, E dist[][DefaultVertices], int path[][DefaultVertices]) {
 int i, j, k, n = G.numberOfVertices();
 stack<int> st; // 記憶路徑
 
 for(i = 0; i < n; i++) {
  for(j = 0; j < n; j++) {
   if(i != j) { // 如果不是頂點(diǎn)自身
    cout << "從頂點(diǎn)" << G.getValue(i) << "到頂點(diǎn)" << G.getValue(j) << "的最短路徑為:";
    if(path[i][j] == -1) { // 表示兩者之間不存在通路
     cout << "頂點(diǎn)" << G.getValue(i) << "到頂點(diǎn)" << G.getValue(j) << "不存在路徑!" << endl;
    } else { // 存在路徑
     // 要把頂點(diǎn)存到棧中,倒過來輸出路徑
     k = j;
     do {
      k = path[i][k];
      st.push(k); // 把頂點(diǎn)k壓入棧中
     }while(k != i);
     while(st.empty() == false) { // 當(dāng)棧不空時(shí)
      k = st.top(); // 退棧
      st.pop();
      cout << G.getValue(k) << "->";
     }
     cout << G.getValue(j) << ",長度為:" << dist[i][j] << endl;
    }
   }
  } // for內(nèi)循環(huán)
 } // for外循環(huán)
}
#endif /* Floyd_h */

3.main.cpp

/*
 測試數(shù)據(jù):
 4 8
 0 1 2 3
 0 1 1
 0 3 4
 1 2 9
 1 3 2
 2 0 3
 2 1 5
 2 3 8
 3 2 6
 */
 
#include "Floyd.h"
 
int main(int argc, const char * argv[]) {
 Graphlnk<char, int> G; // 聲明圖對(duì)象
 int dist[DefaultVertices][DefaultVertices], path[DefaultVertices][DefaultVertices];
 
 // 創(chuàng)建圖
 G.inputGraph();
 cout << "圖的信息如下:" << endl;
 G.outputGraph();
 // 求所有頂點(diǎn)之間的最短路徑
 Floyd(G, dist, path);
 // 輸出各個(gè)頂點(diǎn)之間的最短路徑
 printShortestPath(G, dist, path);
 return 0;
}

測試結(jié)果:

以上就是本文的全部內(nèi)容,希望對(duì)大家的學(xué)習(xí)有所幫助,也希望大家多多支持腳本之家。

相關(guān)文章

  • C/C++內(nèi)存管理基礎(chǔ)與面試

    C/C++內(nèi)存管理基礎(chǔ)與面試

    本章主要介紹C語言與C++的內(nèi)存管理,以C++的內(nèi)存分布作為引入,介紹C++不同于C語言的內(nèi)存管理方式(new?delete對(duì)比?malloc?free),感興趣的朋友來看看吧
    2022-07-07
  • C語言詳細(xì)分析講解內(nèi)存管理malloc realloc free calloc函數(shù)的使用

    C語言詳細(xì)分析講解內(nèi)存管理malloc realloc free calloc函數(shù)的使用

    C語言內(nèi)存管理相關(guān)的函數(shù)主要有realloc、calloc、malloc、free等,下面這篇文章主要給大家介紹了關(guān)于C語言內(nèi)存管理realloc、calloc、malloc、free函數(shù)的相關(guān)資料,需要的朋友可以參考下
    2022-05-05
  • C語言統(tǒng)計(jì)一篇英文短文中單詞的個(gè)數(shù)實(shí)例代碼

    C語言統(tǒng)計(jì)一篇英文短文中單詞的個(gè)數(shù)實(shí)例代碼

    本文通過實(shí)例代碼給大家介紹的C語言統(tǒng)計(jì)一篇英文短文中單詞的個(gè)數(shù),代碼簡單易懂,非常不錯(cuò),具有參考借鑒價(jià)值,需要的朋友參考下吧
    2018-03-03
  • C++實(shí)現(xiàn)LeetCode(98.驗(yàn)證二叉搜索樹)

    C++實(shí)現(xiàn)LeetCode(98.驗(yàn)證二叉搜索樹)

    這篇文章主要介紹了C++實(shí)現(xiàn)LeetCode(98.驗(yàn)證二叉搜索樹),本篇文章通過簡要的案例,講解了該項(xiàng)技術(shù)的了解與使用,以下就是詳細(xì)內(nèi)容,需要的朋友可以參考下
    2021-07-07
  • C語言中有哪些字符處理函數(shù)你知道嗎

    C語言中有哪些字符處理函數(shù)你知道嗎

    這篇文章主要為大家詳細(xì)介紹了C語言字符處理函數(shù),文中示例代碼介紹的非常詳細(xì),具有一定的參考價(jià)值,感興趣的小伙伴們可以參考一下,希望能夠給你帶來幫助
    2022-03-03
  • opencv利用視頻的前n幀求平均圖像

    opencv利用視頻的前n幀求平均圖像

    這篇文章主要為大家詳細(xì)介紹了opencv利用視頻的前n幀求平均圖像,文中示例代碼介紹的非常詳細(xì),具有一定的參考價(jià)值,感興趣的小伙伴們可以參考一下
    2020-03-03
  • C語言 深入講解條件編譯的用處

    C語言 深入講解條件編譯的用處

    C語言提供了條件編譯的語法,就是在編譯源碼的時(shí)候,可以選擇性地編譯指定的代碼。例如我們開發(fā)一個(gè)兼容windows系統(tǒng)和linux系統(tǒng)運(yùn)行的項(xiàng)目,那么,一些與操作系統(tǒng)密切相關(guān)的代碼,就需要進(jìn)行選擇性編譯
    2022-04-04
  • C++中的內(nèi)存分區(qū)介紹

    C++中的內(nèi)存分區(qū)介紹

    這篇文章主要介紹了C++中的內(nèi)存分區(qū)介紹,C++的內(nèi)存劃分為棧區(qū)、堆區(qū)、全局區(qū)/靜態(tài)區(qū)、字符串常量和代碼區(qū),本文分別對(duì)他們一一說明,需要的朋友可以參考下
    2015-07-07
  • 如何為Qt視圖中的文字實(shí)現(xiàn)彩虹漸變效果

    如何為Qt視圖中的文字實(shí)現(xiàn)彩虹漸變效果

    這篇文章主要給大家介紹了關(guān)于如何為Qt視圖中的文字實(shí)現(xiàn)彩虹漸變效果的相關(guān)資料,文中通過示例代碼介紹的非常詳細(xì),對(duì)大家的學(xué)習(xí)或者使用Qt具有一定的參考學(xué)習(xí)價(jià)值,需要的朋友們下面來一起學(xué)習(xí)學(xué)習(xí)吧
    2019-03-03
  • C++中復(fù)制構(gòu)造函數(shù)和重載賦值操作符總結(jié)

    C++中復(fù)制構(gòu)造函數(shù)和重載賦值操作符總結(jié)

    這篇文章主要介紹了C++中復(fù)制構(gòu)造函數(shù)和重載賦值操作符總結(jié),本文對(duì)復(fù)制構(gòu)造函數(shù)和重載賦值操作符的定義、調(diào)用時(shí)機(jī)、實(shí)現(xiàn)要點(diǎn)、細(xì)節(jié)等做了總結(jié),需要的朋友可以參考下
    2014-10-10

最新評(píng)論