python 在threading中如何處理主進程和子線程的關系
之前用python的多線程,總是處理不好進程和線程之間的關系。后來發(fā)現了join和setDaemon函數,才終于弄明白。下面總結一下。
1.使用join函數后,主進程會在調用join的地方等待子線程結束,然后才接著往下執(zhí)行。
join使用實例如下:
import time
import random
import threading
class worker(threading.Thread):
def __init__(self):
threading.Thread.__init__(self)
def run(self):
t = random.randint(1,10)
time.sleep(t)
print "This is " + self.getName() + ";I sleep %d second."%(t)
tsk = []
for i in xrange(0,5):
time.sleep(0.1)
thread = worker()
thread.start()
tsk.append(thread)
for tt in tsk:
tt.join()
print "This is the end of main thread."
運行結果如下:
# python testjoin.py This is Thread-3;I sleep 2 second. This is Thread-1;I sleep 4 second. This is Thread-2;I sleep 7 second. This is Thread-4;I sleep 7 second. This is Thread-5;I sleep 7 second. This is the end of main thread.
這里創(chuàng)建了5個子線程,每個線程隨機等待1-10秒后打印退出;主線程分別等待5個子線程結束。最后結果是先顯示各個子線程,再顯示主進程的結果。
2. 如果使用的setDaemon函數,則與join相反,主進程結束的時候不會等待子線程。
setDaemon函數使用實例:
import time
import random
import threading
class worker(threading.Thread):
def __init__(self):
threading.Thread.__init__(self)
def run(self):
t = random.randint(1,10)
time.sleep(t)
print "This is " + self.getName() + ";I sleep %d second."%(t)
tsk = []
for i in xrange(0,5):
time.sleep(0.1)
thread = worker()
thread.setDaemon(True)
thread.start()
tsk.append(thread)
print "This is the end of main thread."
這里設置主進程為守護進程,當主進程結束的時候,子線程被中止
運行結果如下:
#python testsetDaemon.py
This is the end of main thread.
3、如果沒有使用join和setDaemon函數,則主進程在創(chuàng)建子線程后,直接運行后面的代碼,主程序一直掛起,直到子線程結束才能結束。
import time
import random
import threading
class worker(threading.Thread):
def __init__(self):
threading.Thread.__init__(self)
def run(self):
t = random.randint(1,10)
time.sleep(t)
print "This is " + self.getName() + ";I sleep %d second."%(t)
tsk = []
for i in xrange(0,5):
time.sleep(0.1)
thread = worker()
thread.start()
tsk.append(thread)
print "This is the end of main thread."
運行結果如下:
# python testthread.py This is the end of main thread. This is Thread-4;I sleep 1 second. This is Thread-3;I sleep 7 second. This is Thread-5;I sleep 7 second. This is Thread-1;I sleep 10 second. This is Thread-2;I sleep 10 second.
補充知識:Python Thread和Process對比
原因:進程和線程的差距(方向不同,之針對這個實例)
# coding=utf-8
import logging
import multiprocessing
import os
import time
from threading import Thread
logging.basicConfig(
level=logging.INFO,
format="%(asctime)s 【 %(process)d 】 %(processName)s %(message)s"
)
def func (i):
# logging.info(f'子:{os.getpid()},\t{i}')
return f'子:{os.getpid()},\t{i}'
def main (ctx):
start01 = time.time()
ts = [Thread(target=func, args=(i,)) for i in range(100)]
[t.start() for t in ts]
[t.join() for t in ts]
end01 = time.time() - start01
logging.info(f"線程花費的時間:{end01}秒")
start02 = time.time()
ps = [ctx.Process(target=func, args=(i,)) for i in range(100)]
[p.start() for p in ps]
[p.join() for p in ps]
end02 = time.time() - start02
logging.info(f"進程花費的時間:{end02}秒")
if __name__ == '__main__':
# windows 啟動方式
multiprocessing.set_start_method('spawn')
# 獲取上下文
ctx = multiprocessing.get_context('spawn')
# 檢查這是否是凍結的可執(zhí)行文件中的偽分支進程。
ctx.freeze_support()
main(ctx)
輸出:
2019-10-06 14:17:22,729 【 7412 】 MainProcess 線程花費的時間:0.012967586517333984秒
2019-10-06 14:17:25,671 【 7412 】 MainProcess 進程花費的時間:2.9418249130249023秒
以上這篇python 在threading中如何處理主進程和子線程的關系就是小編分享給大家的全部內容了,希望能給大家一個參考,也希望大家多多支持腳本之家。
相關文章
Python實現基于Fasttext的商品評論數據分類的操作流程
這篇文章主要介紹了Python實現基于Fasttext的商品評論數據分類,今天使用的fasttext更像是一個集成的庫,把向量化和分類一起做掉了,這個對于使用層面來講就更方便了一些,需要的朋友可以參考下2022-06-06

