Tensorflow安裝問題: Could not find a version that satisfies the requirement tensorflow
引言: Tensorflow大名鼎鼎,這里不再贅述其為何物。這里講描述在安裝python包的時(shí)候碰到的“No matching distribution found for tensorflow”,其原因以及如何解決。
簡(jiǎn)單的安裝tensorflow
這里安裝的tensorflow的cpu版本,gpu版本可以自行搜索安裝指南,或者參考如下指令:
pip3 install tensorflow #cpu
這里使用的python 3.6.3版本。
pip3 install tensorflow-gpu
這里是gpu的版本。
window的環(huán)境
window 7.
問題描述:
pip3 install tensorflow
如此簡(jiǎn)單的指令,應(yīng)該不會(huì)出錯(cuò)吧,結(jié)果得到如下錯(cuò)誤信息:
Collecting tensorflow
Could not find a version that satisfies the requirement tensorflow (from versions: ) No matching distribution found for tensorflow
為什么沒有找到tensorflow呢?那我們自行找找看吧?
pip3 search tensorflow
具體的輸出信息如下:
…………………..
tensorbase (0.3) - Minimalistic TensorFlow
Framework
tensorbayes (0.3.0) - Deep Variational Inference in
TensorFlow
tensorflow-tensorboard (0.4.0rc3) - TensorBoard lets you watch
Tensors Flow
tensorboard_logger (0.0.4) - Log TensorBoard events without
Tensorflow
tensorboardX (0.8) - TensorBoardX lets you watch
Tensors Flow without Tensorflow
tensorbuilder (0.3.6) - A light wrapper over TensorFlow
that enables you to easily
create complex deep neural
networks using the Builder
Pattern through a functional
fluent immutable API
tensorflow-utils (0.1.0) - Classes and methods to make
using TensorFlow easier
tensorflow-transform (0.4.0) - A library for data
preprocessing with TensorFlow
tensorflow (1.5.0rc0) - TensorFlow helps the tensors
flow
tensorflow_forward_ad (0.3.3) - TensorFlow forward-mode
automatic differentiation
tensorflow_hmm (0.4.1) - Tensorflow and numpy
implementations of the HMM
viterbi and forward/backward
algorithms
tensorflow_nlp (0.0.1) - Deep Learning NLP Tasks
implemented on Tensorflow
tensorflowonspark (1.1.0) - Deep learning with TensorFlow
on Apache Spark clusters
tensorflowservingclient (0.5.1.post2) - Prebuilt tensorflow serving
client
tensorforce (0.3.4) - Reinforcement learning for
TensorFlow
tensorfunk (0.0.0) - tensorflow model converter to
create tensorflow-independent
prediction functions.
tensorfuse (0.0.1) - Common interface for Theano,
CGT, and TensorFlow
tensorgraph (3.5.8) - A high level tensorflow library
for building deep learning
models
tensorhive (0.1.1) - Lightweight computing resource
management tool for executing
distributed TensorFlow programs
tensorlm (0.3) - TensorFlow wrapper for deep
neural text generation on
character or word level with
RNNs / LSTMs
TensorMol (0.1) - TensorFlow+Molecules =
TensorMol
tensorpack (0.8.0) - Neural Network Toolbox on
TensorFlow
tensorpy (1.1.0) - Easy Image Classification with
TensorFlow!
tensorrec (0.1) - A TensorFlow recommendation
algorithm and framework in
Python.
tensorspark (1.0.6) - Tensorflow on Spark, a scalable
system for high-performance
machine learning
tensorvision (0.1.dev1) - A library to build and train
neural networks in with
TensorFlow for Computer Vision
TFANN (1.0.1) - A neural network module
containing implementations of
MLP, and CNN networks in
TensorFlow.
TFBOYS (0.0.1) - TensorFlow BOYS
tfcf (0.0.0) - A tensorflow-based recommender
system.
tfcoreml (0.1.0) - Tensorflow to Core ML converter
tfdebugger (0.1.1) - TensorFlow Debugger
tfdeploy (0.4.2) - Deploy tensorflow graphs for
fast evaluation and export to
tensorflow-less environments
running numpy.
tfgraph (0.2) - Python's Tensorflow Graph
Library
tfgraphviz (0.0.6) - A visualization tool to show a
graph like TensorFlow and
TensorBoard
…………………………………………
悲傷的我如此難以自抑,明明可以找到的,怎么卻無法安裝嗯?我需要自行好好找找明明是誰(shuí)? :-)
問題分析
二話不說,直接上官網(wǎng)上查查看,雖然官網(wǎng)離我朝遠(yuǎn)隔萬里,需要跋山涉水之后方可達(dá)到。翻過拿到看不見的墻之后,重要可以看到官方信息了。
官方路標(biāo)如下: https://www.tensorflow.org/install/install_windows
其中所提安裝步驟非常簡(jiǎn)潔,如此簡(jiǎn)潔的步驟,怎么可能出錯(cuò)? 于是重新梳理了一下,難道是Python或者pip3本身的問題嗎?
check pip3
pip –version
發(fā)現(xiàn)其為最新版本:
pip 9.0.1 from d:\program files (x86)\python\lib\site-packages (python 3.6)
那Python呢? 官方文檔中提到如下:
If one of the following versions of Python is not installed on your machine, install it now:
* Python 3.5.x 64-bit from python.org
* Python 3.6.x 64-bit from python.org
難道我安裝的python是假python不成? 估計(jì)有可能吧,難道是64bit的問題?
檢查python的版本
python -v
得到了python的完整信息:
..........................................
> D:\Program Files (x86)\python\lib\__pycache__\sysconfig.cpython-36.pyc matches D:\Program Files (x86)\python\lib\sysconfig.py
> code object from 'D:\\Program Files (x86)\\python\\lib\\__pycache__\\sysconfig.cpython-36.pyc'
import 'sysconfig' # <_frozen_importlib_external.SourceFileLoader object at 0x006A1230>
> D:\Program Files (x86)\python\lib\__pycache__\_bootlocale.cpython-36.pyc matches D:\Program Files (x86)\python\lib\_bootlocale.py
> code object from 'D:\\Program Files (x86)\\python\\lib\\__pycache__\\_bootlocale.cpython-36.pyc'
import '_locale' # <class '_frozen_importlib.BuiltinImporter'>
import '_bootlocale' # <_frozen_importlib_external.SourceFileLoader object at 0x007911D0>
> D:\Program Files (x86)\python\lib\encodings\__pycache__\gbk.cpython-36.pyc matches D:\Program Files (x86)\python\lib\encodings\gbk.py
> code object from 'D:\\Program Files (x86)\\python\\lib\\encodings\\__pycache__\\gbk.cpython-36.pyc'
import '_codecs_cn' # <class '_frozen_importlib.BuiltinImporter'>
import '_multibytecodec' # <class '_frozen_importlib.BuiltinImporter'>
import 'encodings.gbk' # <_frozen_importlib_external.SourceFileLoader object at 0x00791490>
import 'site' # <_frozen_importlib_external.SourceFileLoader object at 0x004F73D0>
Python 3.6.3 (v3.6.3:2c5fed8, Oct 3 2017, 17:26:49) [MSC v.1900 32 bit (Intel)] on win32
Type "help", "copyright", "credits" or "license" for more information.
import 'atexit' # <class '_frozen_importlib.BuiltinImporter'>
其中關(guān)于python的關(guān)鍵信息:
Python 3.6.3 (v3.6.3:2c5fed8, Oct 3 2017, 17:26:49) [MSC v.1900 32 bit (Intel)] on win32
“32bit” !!! 一口老血噴出,眾里尋他千百度,驀然回首bug正在這燈火闌珊處。原來是python版本的問題導(dǎo)致的。
修復(fù)問題
重新下載一個(gè)64bit的python版本,之后重新操作就可以了。
python -v
查看其中的關(guān)鍵信息:
Python 3.6.4 (v3.6.4:d48eceb, Dec 19 2017, 06:54:40) [MSC v.1900 64 bit (AMD64)] on win32
確認(rèn)是64位,沒有問題。
然后直接安裝tensorflow:
pip3 install tensorflow
安裝過程如下:
C:\windows\system32>pip3 install tensorflow
Collecting tensorflow
Downloading tensorflow-1.4.0-cp36-cp36m-win_amd64.whl (28.3MB)
100% |████████████████████████████████| 28.3MB 39kB/s
Collecting enum34>=1.1.6 (from tensorflow)
Downloading enum34-1.1.6-py3-none-any.whl
Requirement already satisfied: wheel>=0.26 in d:\program files (x86)\python\lib\site-packages (from tensorflow)
Collecting protobuf>=3.3.0 (from tensorflow)
Downloading protobuf-3.5.1-py2.py3-none-any.whl (388kB)
100% |████████████████████████████████| 389kB 593kB/s
Collecting tensorflow-tensorboard<0.5.0,>=0.4.0rc1 (from tensorflow)
Downloading tensorflow_tensorboard-0.4.0rc3-py3-none-any.whl (1.7MB)
100% |████████████████████████████████| 1.7MB 182kB/s
Requirement already satisfied: six>=1.10.0 in d:\program files (x86)\python\lib\site-packages (from tensorflow)
Collecting numpy>=1.12.1 (from tensorflow)
Downloading numpy-1.13.3-cp36-none-win_amd64.whl (13.1MB)
100% |████████████████████████████████| 13.1MB 81kB/s
Requirement already satisfied: setuptools in d:\program files (x86)\python\lib\site-packages (from protobuf>=3.3.0->tensorflow)
Collecting html5lib==0.9999999 (from tensorflow-tensorboard<0.5.0,>=0.4.0rc1->tensorflow)
Downloading html5lib-0.9999999.tar.gz (889kB)
100% |████████████████████████████████| 890kB 504kB/s
Collecting bleach==1.5.0 (from tensorflow-tensorboard<0.5.0,>=0.4.0rc1->tensorflow)
Downloading bleach-1.5.0-py2.py3-none-any.whl
Requirement already satisfied: werkzeug>=0.11.10 in d:\program files (x86)\python\lib\site-packages (from tensorflow-tensorboard<0.5.0,>=0.4.0rc1->tensorflow)
Collecting markdown>=2.6.8 (from tensorflow-tensorboard<0.5.0,>=0.4.0rc1->tensorflow)
Downloading Markdown-2.6.11-py2.py3-none-any.whl (78kB)
100% |████████████████████████████████| 81kB 583kB/s
Building wheels for collected packages: html5lib
Running setup.py bdist_wheel for html5lib ... done
Stored in directory: C:\Users\chenjunfeng1\AppData\Local\pip\Cache\wheels\6f\85\6c\56b8e1292c6214c4eb73b9dda50f53e8e977bf65989373c962
Successfully built html5lib
Installing collected packages: enum34, protobuf, html5lib, numpy, bleach, markdown, tensorflow-tensorboard, tensorflow
Successfully installed bleach-1.5.0 enum34-1.1.6 html5lib-0.9999999 markdown-2.6.11 numpy-1.13.3 protobuf-3.5.1 tensorflow-1.4.0 tensorflow-tensorboard-0.4.0rc3
然后大家就可以愉快地寫代碼了.
總結(jié)
問題總在認(rèn)為不可能的地方發(fā)生。如果存在問題,則一定會(huì)有原因存在。見或者不見,它都在那里。
到此這篇關(guān)于Tensorflow安裝問題: Could not find a version that satisfies the requirement tensorflow的文章就介紹到這了,更多相關(guān)Tensorflow安裝問題內(nèi)容請(qǐng)搜索腳本之家以前的文章或繼續(xù)瀏覽下面的相關(guān)文章希望大家以后多多支持腳本之家!
- 詳解TensorFlow在windows上安裝與簡(jiǎn)單示例
- TensorFlow在MAC環(huán)境下的安裝及環(huán)境搭建
- 基于docker安裝tensorflow的完整步驟
- Python3.7安裝keras和TensorFlow的教程圖解
- Win7下Python與Tensorflow-CPU版開發(fā)環(huán)境的安裝與配置過程
- TensorFlow安裝及jupyter notebook配置方法
- 解決Linux Tensorflow2.0安裝問題
- 解決安裝tensorflow遇到無法卸載numpy 1.8.0rc1的問題
- 完美解決安裝完tensorflow后pip無法使用的問題
相關(guān)文章
Python2.7環(huán)境Flask框架安裝簡(jiǎn)明教程【已測(cè)試】
這篇文章主要介紹了Python2.7環(huán)境Flask框架安裝方法,結(jié)合實(shí)例形式詳細(xì)分析了Python2.7環(huán)境下安裝Flask框架遇到的問題與相關(guān)解決方法、注意事項(xiàng),并給出了一個(gè)基本的測(cè)試示例,需要的朋友可以參考下2018-07-07Python 使用 multiprocessing 模塊創(chuàng)建進(jìn)程池的操作方法
在現(xiàn)代計(jì)算任務(wù)中,尤其是處理大量數(shù)據(jù)或計(jì)算密集型任務(wù)時(shí),使用并行處理可以顯著提升程序性能,Python的multiprocessing模塊提供了創(chuàng)建進(jìn)程池的功能,通過預(yù)先創(chuàng)建的進(jìn)程來并發(fā)執(zhí)行任務(wù),避免了頻繁的進(jìn)程創(chuàng)建和銷毀,感興趣的朋友一起看看吧2024-10-10python打印當(dāng)前文件的絕對(duì)路徑并解決打印為空的問題
這篇文章主要介紹了python打印當(dāng)前文件的絕對(duì)路徑并解決打印為空的問題,文中補(bǔ)充介紹了python中對(duì)文件路徑的獲取方法,需要的朋友可以參考下2023-03-03解決pip安裝第三方庫(kù),但PyCharm中卻無法識(shí)別的問題for mac
這篇文章主要介紹了解決pip安裝第三方庫(kù),但PyCharm中卻無法識(shí)別的問題for mac,具有很好的參考價(jià)值,希望對(duì)大家有所幫助,如有錯(cuò)誤或未考慮完全的地方,望不吝賜教2024-09-09Python進(jìn)行數(shù)組的排序、倒序、截取方式
這篇文章主要介紹了Python進(jìn)行數(shù)組的排序、倒序、截取方式,具有很好的參考價(jià)值,希望對(duì)大家有所幫助,如有錯(cuò)誤或未考慮完全的地方,望不吝賜教2024-02-02