TensorFlow2.X結(jié)合OpenCV 實(shí)現(xiàn)手勢識(shí)別功能
使用Tensorflow 構(gòu)建卷積神經(jīng)網(wǎng)絡(luò),訓(xùn)練手勢識(shí)別模型,使用opencv DNN 模塊加載模型實(shí)時(shí)手勢識(shí)別
效果如下:
先顯示下部分?jǐn)?shù)據(jù)集圖片(0到9的表示,感覺很怪)
構(gòu)建模型進(jìn)行訓(xùn)練
import tensorflow as tf from tensorflow import keras from tensorflow.keras import datasets,layers,optimizers,Sequential,metrics from tensorflow.python.framework.convert_to_constants import convert_variables_to_constants_v2 import os import pathlib import random import matplotlib.pyplot as plt os.environ['TF_CPP_MIN_LOG_LEVEL']='2' def read_data(path): path_root = pathlib.Path(path) # print(path_root) # for item in path_root.iterdir(): # print(item) image_paths = list(path_root.glob('*/*')) image_paths = [str(path) for path in image_paths] random.shuffle(image_paths) image_count = len(image_paths) # print(image_count) # print(image_paths[:10]) label_names = sorted(item.name for item in path_root.glob('*/') if item.is_dir()) # print(label_names) label_name_index = dict((name, index) for index, name in enumerate(label_names)) # print(label_name_index) image_labels = [label_name_index[pathlib.Path(path).parent.name] for path in image_paths] # print("First 10 labels indices: ", image_labels[:10]) return image_paths,image_labels,image_count def preprocess_image(image): image = tf.image.decode_jpeg(image, channels=3) image = tf.image.resize(image, [100, 100]) image /= 255.0 # normalize to [0,1] range # image = tf.reshape(image,[100*100*3]) return image def load_and_preprocess_image(path,label): image = tf.io.read_file(path) return preprocess_image(image),label def creat_dataset(image_paths,image_labels,bitch_size): db = tf.data.Dataset.from_tensor_slices((image_paths, image_labels)) dataset = db.map(load_and_preprocess_image).batch(bitch_size) return dataset def train_model(train_data,test_data): #構(gòu)建模型 network = keras.Sequential([ keras.layers.Conv2D(32,kernel_size=[5,5],padding="same",activation=tf.nn.relu), keras.layers.MaxPool2D(pool_size=[2, 2], strides=2, padding='same'), keras.layers.Conv2D(64,kernel_size=[3,3],padding="same",activation=tf.nn.relu), keras.layers.MaxPool2D(pool_size=[2, 2], strides=2, padding='same'), keras.layers.Conv2D(64,kernel_size=[3,3],padding="same",activation=tf.nn.relu), keras.layers.Flatten(), keras.layers.Dense(512,activation='relu'), keras.layers.Dropout(0.5), keras.layers.Dense(128,activation='relu'), keras.layers.Dense(10)]) network.build(input_shape=(None,100,100,3)) network.summary() network.compile(optimizer=optimizers.SGD(lr=0.001), loss=tf.losses.SparseCategoricalCrossentropy(from_logits=True), metrics=['accuracy'] ) #模型訓(xùn)練 network.fit(train_data, epochs = 100,validation_data=test_data,validation_freq=2) network.evaluate(test_data) tf.saved_model.save(network,'D:\\code\\PYTHON\\gesture_recognition\\model\\') print("保存模型成功") # Convert Keras model to ConcreteFunction full_model = tf.function(lambda x: network(x)) full_model = full_model.get_concrete_function( tf.TensorSpec(network.inputs[0].shape, network.inputs[0].dtype)) # Get frozen ConcreteFunction frozen_func = convert_variables_to_constants_v2(full_model) frozen_func.graph.as_graph_def() layers = [op.name for op in frozen_func.graph.get_operations()] print("-" * 50) print("Frozen model layers: ") for layer in layers: print(layer) print("-" * 50) print("Frozen model inputs: ") print(frozen_func.inputs) print("Frozen model outputs: ") print(frozen_func.outputs) # Save frozen graph from frozen ConcreteFunction to hard drive tf.io.write_graph(graph_or_graph_def=frozen_func.graph, logdir="D:\\code\\PYTHON\\gesture_recognition\\model\\frozen_model\\", name="frozen_graph.pb", as_text=False) print("模型轉(zhuǎn)換完成,訓(xùn)練結(jié)束") if __name__ == "__main__": print(tf.__version__) train_path = 'D:\\code\\PYTHON\\gesture_recognition\\Dataset' test_path = 'D:\\code\\PYTHON\\gesture_recognition\\testdata' image_paths,image_labels,_ = read_data(train_path) train_data = creat_dataset(image_paths,image_labels,16) image_paths,image_labels,_ = read_data(test_path) test_data = creat_dataset(image_paths,image_labels,16) train_model(train_data,test_data)
OpenCV加載模型,實(shí)時(shí)檢測
這里為了簡化檢測使用了ROI。
import cv2 from cv2 import dnn import numpy as np print(cv2.__version__) class_name = ['0', '1', '2', '3', '4', '5', '6', '7', '8', '9'] net = dnn.readNetFromTensorflow('D:\\code\\PYTHON\\gesture_recognition\\model\\frozen_model\\frozen_graph.pb') cap = cv2.VideoCapture(0) i = 0 while True: _,frame= cap.read() src_image = frame cv2.rectangle(src_image, (300, 100),(600, 400), (0, 255, 0), 1, 4) frame = cv2.cvtColor(frame,cv2.COLOR_BGR2RGB) pic = frame[100:400,300:600] cv2.imshow("pic1", pic) # print(pic.shape) pic = cv2.resize(pic,(100,100)) blob = cv2.dnn.blobFromImage(pic, scalefactor=1.0/225., size=(100, 100), mean=(0, 0, 0), swapRB=False, crop=False) # blob = np.transpose(blob, (0,2,3,1)) net.setInput(blob) out = net.forward() out = out.flatten() classId = np.argmax(out) # print("classId",classId) print("預(yù)測結(jié)果為:",class_name[classId]) src_image = cv2.putText(src_image,str(classId),(300,100), cv2.FONT_HERSHEY_SIMPLEX, 2,(0,0,255),2,4) # cv.putText(img, text, org, fontFace, fontScale, fontcolor, thickness, lineType) cv2.imshow("pic",src_image) if cv2.waitKey(10) == ord('0'): break
小結(jié)
這里本質(zhì)上還是一個(gè)圖像分類任務(wù)。而且,樣本數(shù)量較少。優(yōu)化的時(shí)候需要做數(shù)據(jù)增強(qiáng),還需要防止過擬合。
到此這篇關(guān)于TensorFlow2.X結(jié)合OpenCV 實(shí)現(xiàn)手勢識(shí)別功能的文章就介紹到這了,更多相關(guān)TensorFlow OpenCV 手勢識(shí)別內(nèi)容請(qǐng)搜索腳本之家以前的文章或繼續(xù)瀏覽下面的相關(guān)文章希望大家以后多多支持腳本之家!
相關(guān)文章
Python爬蟲實(shí)戰(zhàn)之使用Scrapy爬取豆瓣圖片
在用Python的urllib和BeautifulSoup寫過了很多爬蟲之后,本人決定嘗試著名的Python爬蟲框架——Scrapy.本次分享將詳細(xì)講述如何利用Scrapy來下載豆瓣名人圖片,需要的朋友可以參考下2021-06-06通俗的講解深度學(xué)習(xí)中CUDA,cudatookit,cudnn和pytorch的關(guān)系
有些剛?cè)胄械呐笥芽偸歉悴磺宄﨏UDA,cudatookit,cudnn和pytorch的關(guān)系,那么今天這篇文章用通俗易懂的話講解了他們之間的關(guān)系,需要的朋友可以參考下,相信會(huì)對(duì)你有所幫助2023-03-03python微信公眾號(hào)之關(guān)鍵詞自動(dòng)回復(fù)
這篇文章主要為大家詳細(xì)介紹了python微信公眾號(hào)之關(guān)鍵詞自動(dòng)回復(fù),具有一定的參考價(jià)值,感興趣的小伙伴們可以參考一下2018-06-06在spyder IPython console中,運(yùn)行代碼加入?yún)?shù)的實(shí)例
這篇文章主要介紹了在spyder IPython console中,運(yùn)行代碼加入?yún)?shù)的實(shí)例,具有很好的參考價(jià)值,希望對(duì)大家有所幫助。一起跟隨小編過來看看吧2020-04-04Python+tkinter實(shí)現(xiàn)網(wǎng)站下載工具
這篇文章主要為大家詳細(xì)介紹了如何利用Python+tkinter實(shí)現(xiàn)網(wǎng)站下載工具,實(shí)現(xiàn)所有數(shù)據(jù)一鍵獲取,文中的示例代碼講解詳細(xì),感興趣的可以了解一下2023-03-03