在Tensorflow中實現(xiàn)梯度下降法更新參數(shù)值
我就廢話不多說了,直接上代碼吧!
tf.train.GradientDescentOptimizer(0.01).minimize(cross_entropy)
TensorFlow經(jīng)過使用梯度下降法對損失函數(shù)中的變量進行修改值,默認修改tf.Variable(tf.zeros([784,10]))
為Variable的參數(shù)。
train_step = tf.train.GradientDescentOptimizer(0.01).minimize(cross_entropy,var_list=[w,b])
也可以使用var_list參數(shù)來定義更新那些參數(shù)的值
#導入Minst數(shù)據(jù)集 import input_data mnist = input_data.read_data_sets("data",one_hot=True) #導入tensorflow庫 import tensorflow as tf #輸入變量,把28*28的圖片變成一維數(shù)組(丟失結(jié)構(gòu)信息) x = tf.placeholder("float",[None,784]) #權(quán)重矩陣,把28*28=784的一維輸入,變成0-9這10個數(shù)字的輸出 w = tf.Variable(tf.zeros([784,10])) #偏置 b = tf.Variable(tf.zeros([10])) #核心運算,其實就是softmax(x*w+b) y = tf.nn.softmax(tf.matmul(x,w) + b) #這個是訓練集的正確結(jié)果 y_ = tf.placeholder("float",[None,10]) #交叉熵,作為損失函數(shù) cross_entropy = -tf.reduce_sum(y_ * tf.log(y)) #梯度下降算法,最小化交叉熵 train_step = tf.train.GradientDescentOptimizer(0.01).minimize(cross_entropy) #初始化,在run之前必須進行的 init = tf.initialize_all_variables() #創(chuàng)建session以便運算 sess = tf.Session() sess.run(init) #迭代1000次 for i in range(1000): #獲取訓練數(shù)據(jù)集的圖片輸入和正確表示數(shù)字 batch_xs, batch_ys = mnist.train.next_batch(100) #運行剛才建立的梯度下降算法,x賦值為圖片輸入,y_賦值為正確的表示數(shù)字 sess.run(train_step,feed_dict = {x:batch_xs, y_: batch_ys}) #tf.argmax獲取最大值的索引。比較運算后的結(jié)果和本身結(jié)果是否相同。 #這步的結(jié)果應該是[1,1,1,1,1,1,1,1,0,1...........1,1,0,1]這種形式。 #1代表正確,0代表錯誤 correct_prediction = tf.equal(tf.argmax(y,1), tf.argmax(y_,1)) #tf.cast先將數(shù)據(jù)轉(zhuǎn)換成float,防止求平均不準確。 #tf.reduce_mean由于只有一個參數(shù),就是上面那個數(shù)組的平均值。 accuracy = tf.reduce_mean(tf.cast(correct_prediction,"float")) #輸出 print(sess.run(accuracy,feed_dict={x:mnist.test.images,y_: mnist.test.labels}))
計算結(jié)果如下
"C:\Program Files\Anaconda3\python.exe" D:/pycharmprogram/tensorflow_learn/softmax_learn/softmax_learn.py Extracting data\train-images-idx3-ubyte.gz Extracting data\train-labels-idx1-ubyte.gz Extracting data\t10k-images-idx3-ubyte.gz Extracting data\t10k-labels-idx1-ubyte.gz WARNING:tensorflow:From C:\Program Files\Anaconda3\lib\site-packages\tensorflow\python\util\tf_should_use.py:175: initialize_all_variables (from tensorflow.python.ops.variables) is deprecated and will be removed after 2017-03-02. Instructions for updating: Use `tf.global_variables_initializer` instead. 2018-05-14 15:49:45.866600: W C:\tf_jenkins\home\workspace\rel-win\M\windows\PY\35\tensorflow\core\platform\cpu_feature_guard.cc:45] The TensorFlow library wasn't compiled to use AVX instructions, but these are available on your machine and could speed up CPU computations. 2018-05-14 15:49:45.866600: W C:\tf_jenkins\home\workspace\rel-win\M\windows\PY\35\tensorflow\core\platform\cpu_feature_guard.cc:45] The TensorFlow library wasn't compiled to use AVX2 instructions, but these are available on your machine and could speed up CPU computations. 0.9163 Process finished with exit code 0
如果限制,只更新參數(shù)W查看效果
"C:\Program Files\Anaconda3\python.exe" D:/pycharmprogram/tensorflow_learn/softmax_learn/softmax_learn.py Extracting data\train-images-idx3-ubyte.gz Extracting data\train-labels-idx1-ubyte.gz Extracting data\t10k-images-idx3-ubyte.gz Extracting data\t10k-labels-idx1-ubyte.gz WARNING:tensorflow:From C:\Program Files\Anaconda3\lib\site-packages\tensorflow\python\util\tf_should_use.py:175: initialize_all_variables (from tensorflow.python.ops.variables) is deprecated and will be removed after 2017-03-02. Instructions for updating: Use `tf.global_variables_initializer` instead. 2018-05-14 15:51:08.543600: W C:\tf_jenkins\home\workspace\rel-win\M\windows\PY\35\tensorflow\core\platform\cpu_feature_guard.cc:45] The TensorFlow library wasn't compiled to use AVX instructions, but these are available on your machine and could speed up CPU computations. 2018-05-14 15:51:08.544600: W C:\tf_jenkins\home\workspace\rel-win\M\windows\PY\35\tensorflow\core\platform\cpu_feature_guard.cc:45] The TensorFlow library wasn't compiled to use AVX2 instructions, but these are available on your machine and could speed up CPU computations. 0.9187 Process finished with exit code 0
可以看出只修改W對結(jié)果影響不大,如果設置只修改b
#導入Minst數(shù)據(jù)集 import input_data mnist = input_data.read_data_sets("data",one_hot=True) #導入tensorflow庫 import tensorflow as tf #輸入變量,把28*28的圖片變成一維數(shù)組(丟失結(jié)構(gòu)信息) x = tf.placeholder("float",[None,784]) #權(quán)重矩陣,把28*28=784的一維輸入,變成0-9這10個數(shù)字的輸出 w = tf.Variable(tf.zeros([784,10])) #偏置 b = tf.Variable(tf.zeros([10])) #核心運算,其實就是softmax(x*w+b) y = tf.nn.softmax(tf.matmul(x,w) + b) #這個是訓練集的正確結(jié)果 y_ = tf.placeholder("float",[None,10]) #交叉熵,作為損失函數(shù) cross_entropy = -tf.reduce_sum(y_ * tf.log(y)) #梯度下降算法,最小化交叉熵 train_step = tf.train.GradientDescentOptimizer(0.01).minimize(cross_entropy,var_list=[b]) #初始化,在run之前必須進行的 init = tf.initialize_all_variables() #創(chuàng)建session以便運算 sess = tf.Session() sess.run(init) #迭代1000次 for i in range(1000): #獲取訓練數(shù)據(jù)集的圖片輸入和正確表示數(shù)字 batch_xs, batch_ys = mnist.train.next_batch(100) #運行剛才建立的梯度下降算法,x賦值為圖片輸入,y_賦值為正確的表示數(shù)字 sess.run(train_step,feed_dict = {x:batch_xs, y_: batch_ys}) #tf.argmax獲取最大值的索引。比較運算后的結(jié)果和本身結(jié)果是否相同。 #這步的結(jié)果應該是[1,1,1,1,1,1,1,1,0,1...........1,1,0,1]這種形式。 #1代表正確,0代表錯誤 correct_prediction = tf.equal(tf.argmax(y,1), tf.argmax(y_,1)) #tf.cast先將數(shù)據(jù)轉(zhuǎn)換成float,防止求平均不準確。 #tf.reduce_mean由于只有一個參數(shù),就是上面那個數(shù)組的平均值。 accuracy = tf.reduce_mean(tf.cast(correct_prediction,"float")) #輸出 print(sess.run(accuracy,feed_dict={x:mnist.test.images,y_: mnist.test.labels}))
計算結(jié)果:
"C:\Program Files\Anaconda3\python.exe" D:/pycharmprogram/tensorflow_learn/softmax_learn/softmax_learn.py Extracting data\train-images-idx3-ubyte.gz Extracting data\train-labels-idx1-ubyte.gz Extracting data\t10k-images-idx3-ubyte.gz Extracting data\t10k-labels-idx1-ubyte.gz WARNING:tensorflow:From C:\Program Files\Anaconda3\lib\site-packages\tensorflow\python\util\tf_should_use.py:175: initialize_all_variables (from tensorflow.python.ops.variables) is deprecated and will be removed after 2017-03-02. Instructions for updating: Use `tf.global_variables_initializer` instead. 2018-05-14 15:52:04.483600: W C:\tf_jenkins\home\workspace\rel-win\M\windows\PY\35\tensorflow\core\platform\cpu_feature_guard.cc:45] The TensorFlow library wasn't compiled to use AVX instructions, but these are available on your machine and could speed up CPU computations. 2018-05-14 15:52:04.483600: W C:\tf_jenkins\home\workspace\rel-win\M\windows\PY\35\tensorflow\core\platform\cpu_feature_guard.cc:45] The TensorFlow library wasn't compiled to use AVX2 instructions, but these are available on your machine and could speed up CPU computations. 0.1135 Process finished with exit code 0
如果只更新b那么對效果影響很大。
以上這篇在Tensorflow中實現(xiàn)梯度下降法更新參數(shù)值就是小編分享給大家的全部內(nèi)容了,希望能給大家一個參考,也希望大家多多支持腳本之家。
相關(guān)文章
python實現(xiàn)微信接口(itchat)詳細介紹
這篇文章主要介紹了python實現(xiàn)微信接口(itchat)詳細介紹,小編覺得挺不錯的,這里分享給大家,供需要的朋友參考。2017-10-10selenium動態(tài)數(shù)據(jù)獲取的方法實現(xiàn)
本文主要介紹了selenium動態(tài)數(shù)據(jù)獲取的方法實現(xiàn),文中通過示例代碼介紹的非常詳細,對大家的學習或者工作具有一定的參考學習價值,需要的朋友們下面隨著小編來一起學習學習吧2022-07-07在Python Flask App中獲取已發(fā)布的JSON對象的解決方案
這篇文章主要介紹了在Python Flask App中獲取已發(fā)布的JSON對象的解決方案,文中通過代碼示例介紹的非常詳細,對大家的學習或工作有一定的幫助,需要的朋友可以參考下2024-08-08python測試開發(fā)django之使用supervisord?后臺啟動celery?服務(worker/beat)
Supervisor是用Python開發(fā)的一個client/server服務,是Linux/Unix系統(tǒng)下的一個進程管理工具,不支持Windows系統(tǒng),這篇文章主要介紹了python測試開發(fā)django之使用supervisord?后臺啟動celery?服務(worker/beat),需要的朋友可以參考下2022-07-07