python機器學(xué)習(xí)庫xgboost的使用
1.數(shù)據(jù)讀取
利用原生xgboost庫讀取libsvm數(shù)據(jù)
import xgboost as xgb data = xgb.DMatrix(libsvm文件)
使用sklearn讀取libsvm數(shù)據(jù)
from sklearn.datasets import load_svmlight_file X_train,y_train = load_svmlight_file(libsvm文件)
使用pandas讀取完數(shù)據(jù)后在轉(zhuǎn)化為標(biāo)準(zhǔn)形式
2.模型訓(xùn)練過程
1.未調(diào)參基線模型
使用xgboost原生庫進行訓(xùn)練
import xgboost as xgb
from sklearn.metrics import accuracy_score
dtrain = xgb.DMatrix(f_train, label = l_train)
dtest = xgb.DMatrix(f_test, label = l_test)
param = {'max_depth':2, 'eta':1, 'silent':0, 'objective':'binary:logistic' }
num_round = 2
bst = xgb.train(param, dtrain, num_round)
train_preds = bst.predict(dtrain)
train_predictions = [round(value) for value in train_preds] #進行四舍五入的操作--變成0.1(算是設(shè)定閾值的符號函數(shù))
train_accuracy = accuracy_score(l_train, train_predictions) #使用sklearn進行比較正確率
print ("Train Accuary: %.2f%%" % (train_accuracy * 100.0))
from xgboost import plot_importance #顯示特征重要性
plot_importance(bst)#打印重要程度結(jié)果。
pyplot.show()
使用XGBClassifier進行訓(xùn)練
# 未設(shè)定早停止, 未進行矩陣變換
from xgboost import XGBClassifier
from sklearn.datasets import load_svmlight_file #用于直接讀取svmlight文件形式, 否則就需要使用xgboost.DMatrix(文件名)來讀取這種格式的文件
from sklearn.metrics import accuracy_score
from matplotlib import pyplot
num_round = 100
bst1 =XGBClassifier(max_depth=2, learning_rate=1, n_estimators=num_round, #弱分類樹太少的話取不到更多的特征重要性
silent=True, objective='binary:logistic')
bst1.fit(f_train, l_train)
train_preds = bst1.predict(f_train)
train_accuracy = accuracy_score(l_train, train_preds)
print ("Train Accuary: %.2f%%" % (train_accuracy * 100.0))
preds = bst1.predict(f_test)
test_accuracy = accuracy_score(l_test, preds)
print("Test Accuracy: %.2f%%" % (test_accuracy * 100.0))
from xgboost import plot_importance #顯示特征重要性
plot_importance(bst1)#打印重要程度結(jié)果。
pyplot.show()
2.兩種交叉驗證方式
使用cross_val_score進行交叉驗證
#利用model_selection進行交叉訓(xùn)練
from xgboost import XGBClassifier
from sklearn.model_selection import StratifiedKFold
from sklearn.model_selection import cross_val_score
from sklearn.metrics import accuracy_score
from matplotlib import pyplot
param = {'max_depth':2, 'eta':1, 'silent':0, 'objective':'binary:logistic' }
num_round = 100
bst2 =XGBClassifier(max_depth=2, learning_rate=0.1,n_estimators=num_round, silent=True, objective='binary:logistic')
bst2.fit(f_train, l_train)
kfold = StratifiedKFold(n_splits=10, random_state=7)
results = cross_val_score(bst2, f_train, l_train, cv=kfold)#對數(shù)據(jù)進行十折交叉驗證--9份訓(xùn)練,一份測試
print(results)
print("CV Accuracy: %.2f%% (%.2f%%)" % (results.mean()*100, results.std()*100))
from xgboost import plot_importance #顯示特征重要性
plot_importance(bst2)#打印重要程度結(jié)果。
pyplot.show()
使用GridSearchCV進行網(wǎng)格搜索
#使用sklearn中提供的網(wǎng)格搜索進行測試--找出最好參數(shù),并作為默認(rèn)訓(xùn)練參數(shù)
from xgboost import XGBClassifier
from sklearn.model_selection import GridSearchCV
from sklearn.metrics import accuracy_score
from matplotlib import pyplot
params = {'max_depth':2, 'eta':0.1, 'silent':0, 'objective':'binary:logistic' }
bst =XGBClassifier(max_depth=2, learning_rate=0.1, silent=True, objective='binary:logistic')
param_test = {
'n_estimators': range(1, 51, 1)
}
clf = GridSearchCV(estimator = bst, param_grid = param_test, scoring='accuracy', cv=5)# 5折交叉驗證
clf.fit(f_train, l_train) #默認(rèn)使用最優(yōu)的參數(shù)
preds = clf.predict(f_test)
test_accuracy = accuracy_score(l_test, preds)
print("Test Accuracy of gridsearchcv: %.2f%%" % (test_accuracy * 100.0))
clf.cv_results_, clf.best_params_, clf.best_score_
3.早停止調(diào)參–early_stopping_rounds(查看的是損失是否變化)
#進行提早停止的單獨實例
import xgboost as xgb
from xgboost import XGBClassifier
from sklearn.metrics import accuracy_score
from matplotlib import pyplot
param = {'max_depth':2, 'eta':1, 'silent':0, 'objective':'binary:logistic' }
num_round = 100
bst =XGBClassifier(max_depth=2, learning_rate=0.1, n_estimators=num_round, silent=True, objective='binary:logistic')
eval_set =[(f_test, l_test)]
bst.fit(f_train, l_train, early_stopping_rounds=10, eval_metric="error",eval_set=eval_set, verbose=True) #early_stopping_rounds--當(dāng)多少次的效果差不多時停止 eval_set--用于顯示損失率的數(shù)據(jù) verbose--顯示錯誤率的變化過程
# make prediction
preds = bst.predict(f_test)
test_accuracy = accuracy_score(l_test, preds)
print("Test Accuracy: %.2f%%" % (test_accuracy * 100.0))
4.多數(shù)據(jù)觀察訓(xùn)練損失
#多參數(shù)順
import xgboost as xgb
from xgboost import XGBClassifier
from sklearn.metrics import accuracy_score
from matplotlib import pyplot
num_round = 100
bst =XGBClassifier(max_depth=2, learning_rate=0.1, n_estimators=num_round, silent=True, objective='binary:logistic')
eval_set = [(f_train, l_train), (f_test, l_test)]
bst.fit(f_train, l_train, eval_metric=["error", "logloss"], eval_set=eval_set, verbose=True)
# make prediction
preds = bst.predict(f_test)
test_accuracy = accuracy_score(l_test, preds)
print("Test Accuracy: %.2f%%" % (test_accuracy * 100.0))

5.模型保存與讀取
#模型保存
bst.save_model('demo.model')
#模型讀取與預(yù)測
modelfile = 'demo.model'
# 1
bst = xgb.Booster({'nthread':8}, model_file = modelfile)
# 2
f_test1 = xgb.DMatrix(f_test) #盡量使用xgboost的自己的數(shù)據(jù)矩陣
ypred1 = bst.predict(f_test1)
train_predictions = [round(value) for value in ypred1]
test_accuracy1 = accuracy_score(l_test, train_predictions)
print("Test Accuracy: %.2f%%" % (test_accuracy1 * 100.0))
以上就是本文的全部內(nèi)容,希望對大家的學(xué)習(xí)有所幫助,也希望大家多多支持腳本之家。
- Python梯度提升庫XGBoost解決機器學(xué)習(xí)問題使用探究
- Python機器學(xué)習(xí)應(yīng)用之基于天氣數(shù)據(jù)集的XGBoost分類篇解讀
- python interpret庫訓(xùn)練模型助力機器學(xué)習(xí)
- Python mlxtend庫數(shù)據(jù)科學(xué)和機器學(xué)習(xí)補充工具功能探索
- python?lazypredict構(gòu)建大量基本模型簡化機器學(xué)習(xí)
- Python機器學(xué)習(xí)特征重要性分析的8個常用方法實例探究
- python機器學(xué)習(xí)XGBoost梯度提升決策樹的高效且可擴展實現(xiàn)
相關(guān)文章
基于Python的圖像數(shù)據(jù)增強Data Augmentation解析
這篇文章主要介紹了基于Python的圖像數(shù)據(jù)增強Data Augmentation解析,文中通過示例代碼介紹的非常詳細(xì),對大家的學(xué)習(xí)或者工作具有一定的參考學(xué)習(xí)價值,需要的朋友可以參考下2019-08-08
Python使用BeautifulSoup庫解析HTML基本使用教程
這篇文章主要介紹了Python使用BeautifulSoup庫解析HTML基本使用教程,文中主要對其適合于制作爬蟲方面的特性進行了解析,需要的朋友可以參考下2016-03-03

