亚洲乱码中文字幕综合,中国熟女仑乱hd,亚洲精品乱拍国产一区二区三区,一本大道卡一卡二卡三乱码全集资源,又粗又黄又硬又爽的免费视频

pytorch之inception_v3的實(shí)現(xiàn)案例

 更新時(shí)間:2020年01月06日 17:31:28   作者:樸素.無恙  
今天小編就為大家分享一篇pytorch之inception_v3的實(shí)現(xiàn)案例,具有很好的參考價(jià)值,希望對(duì)大家有所幫助。一起跟隨小編過來看看吧

如下所示:

from __future__ import print_function 
from __future__ import division
import torch
import torch.nn as nn
import torch.optim as optim
import numpy as np
import torchvision
from torchvision import datasets, models, transforms
import matplotlib.pyplot as plt
import time
import os
import copy
import argparse
print("PyTorch Version: ",torch.__version__)
print("Torchvision Version: ",torchvision.__version__)


# Top level data directory. Here we assume the format of the directory conforms 
#  to the ImageFolder structure

數(shù)據(jù)集路徑,路徑下的數(shù)據(jù)集分為訓(xùn)練集和測試集,也就是train 以及val,train下分為兩類數(shù)據(jù)1,2,val集同理

data_dir = "/home/dell/Desktop/data/切割圖像"
# Models to choose from [resnet, alexnet, vgg, squeezenet, densenet, inception]
model_name = "inception" 
# Number of classes in the dataset
num_classes = 2#兩類數(shù)據(jù)1,2

# Batch size for training (change depending on how much memory you have)
batch_size = 32#batchsize盡量選取合適,否則訓(xùn)練時(shí)會(huì)內(nèi)存溢出

# Number of epochs to train for 
num_epochs = 1000

# Flag for feature extracting. When False, we finetune the whole model, 
#  when True we only update the reshaped layer params
feature_extract = True

# 參數(shù)設(shè)置,使得我們能夠手動(dòng)輸入命令行參數(shù),就是讓風(fēng)格變得和Linux命令行差不多
parser = argparse.ArgumentParser(description='PyTorch inception')
parser.add_argument('--outf', default='/home/dell/Desktop/dj/inception/', help='folder to output images and model checkpoints') #輸出結(jié)果保存路徑
parser.add_argument('--net', default='/home/dell/Desktop/dj/inception/inception.pth', help="path to net (to continue training)") #恢復(fù)訓(xùn)練時(shí)的模型路徑
args = parser.parse_args()


訓(xùn)練函數(shù)

def train_model(model, dataloaders, criterion, optimizer, num_epochs=25,is_inception=False):

  since = time.time()

  val_acc_history = []
  
  best_model_wts = copy.deepcopy(model.state_dict())
  best_acc = 0.0
  print("Start Training, InceptionV3!") 
  with open("acc.txt", "w") as f1:
    with open("log.txt", "w")as f2:
      for epoch in range(num_epochs):
        print('Epoch {}/{}'.format(epoch+1, num_epochs))
        print('*' * 10)
        # Each epoch has a training and validation phase
        for phase in ['train', 'val']:
          if phase == 'train':
            model.train() # Set model to training mode
          else:
            model.eval()  # Set model to evaluate mode
    
          running_loss = 0.0
          running_corrects = 0
    
          # Iterate over data.
          for inputs, labels in dataloaders[phase]:
            inputs = inputs.to(device)
            labels = labels.to(device)
    
            # zero the parameter gradients
            optimizer.zero_grad()
    
            # forward
            # track history if only in train
            with torch.set_grad_enabled(phase == 'train'):
              
              if is_inception and phase == 'train':
                # From https://discuss.pytorch.org/t/how-to-optimize-inception-model-with-auxiliary-classifiers/7958
                outputs, aux_outputs = model(inputs)
                loss1 = criterion(outputs, labels)
                loss2 = criterion(aux_outputs, labels)
                loss = loss1 + 0.4*loss2
              else:
                outputs = model(inputs)
                loss = criterion(outputs, labels)
    
              _, preds = torch.max(outputs, 1)
    
              # backward + optimize only if in training phase
              if phase == 'train':
                loss.backward()
                optimizer.step()
    
            # statistics
            running_loss += loss.item() * inputs.size(0)
            running_corrects += torch.sum(preds == labels.data)
          epoch_loss = running_loss / len(dataloaders[phase].dataset)
          epoch_acc = running_corrects.double() / len(dataloaders[phase].dataset)
    
          print('{} Loss: {:.4f} Acc: {:.4f}'.format(phase, epoch_loss, epoch_acc))
          f2.write('{} Loss: {:.4f} Acc: {:.4f}'.format(phase, epoch_loss, epoch_acc))
          f2.write('\n')
          f2.flush()           
          # deep copy the model
          if phase == 'val':
            if (epoch+1)%50==0:
              #print('Saving model......')
              torch.save(model.state_dict(), '%s/inception_%03d.pth' % (args.outf, epoch + 1))
            f1.write("EPOCH=%03d,Accuracy= %.3f%%" % (epoch + 1, epoch_acc))
            f1.write('\n')
            f1.flush()
          if phase == 'val' and epoch_acc > best_acc:
            f3 = open("best_acc.txt", "w")
            f3.write("EPOCH=%d,best_acc= %.3f%%" % (epoch + 1,epoch_acc))
            f3.close()
            best_acc = epoch_acc
            best_model_wts = copy.deepcopy(model.state_dict())
          if phase == 'val':
            val_acc_history.append(epoch_acc)

  time_elapsed = time.time() - since
  print('Training complete in {:.0f}m {:.0f}s'.format(time_elapsed // 60, time_elapsed % 60))
  print('Best val Acc: {:4f}'.format(best_acc))
  # load best model weights
  model.load_state_dict(best_model_wts)
  return model, val_acc_history

 #是否更新參數(shù)
def set_parameter_requires_grad(model, feature_extracting):
  if feature_extracting:
    for param in model.parameters():
      param.requires_grad = False



def initialize_model(model_name, num_classes, feature_extract, use_pretrained=True):
  # Initialize these variables which will be set in this if statement. Each of these
  #  variables is model specific.
  model_ft = None
  input_size = 0

  if model_name == "resnet":
    """ Resnet18
    """
    model_ft = models.resnet18(pretrained=use_pretrained)
    set_parameter_requires_grad(model_ft, feature_extract)
    num_ftrs = model_ft.fc.in_features
    model_ft.fc = nn.Linear(num_ftrs, num_classes)
    input_size = 224

  elif model_name == "alexnet":
    """ Alexnet
    """
    model_ft = models.alexnet(pretrained=use_pretrained)
    set_parameter_requires_grad(model_ft, feature_extract)
    num_ftrs = model_ft.classifier[6].in_features
    model_ft.classifier[6] = nn.Linear(num_ftrs,num_classes)
    input_size = 224

  elif model_name == "vgg":
    """ VGG11_bn
    """
    model_ft = models.vgg11_bn(pretrained=use_pretrained)
    set_parameter_requires_grad(model_ft, feature_extract)
    num_ftrs = model_ft.classifier[6].in_features
    model_ft.classifier[6] = nn.Linear(num_ftrs,num_classes)
    input_size = 224

  elif model_name == "squeezenet":
    """ Squeezenet
    """
    model_ft = models.squeezenet1_0(pretrained=use_pretrained)
    set_parameter_requires_grad(model_ft, feature_extract)
    model_ft.classifier[1] = nn.Conv2d(512, num_classes, kernel_size=(1,1), stride=(1,1))
    model_ft.num_classes = num_classes
    input_size = 224

  elif model_name == "densenet":
    """ Densenet
    """
    model_ft = models.densenet121(pretrained=use_pretrained)
    set_parameter_requires_grad(model_ft, feature_extract)
    num_ftrs = model_ft.classifier.in_features
    model_ft.classifier = nn.Linear(num_ftrs, num_classes) 
    input_size = 224

  elif model_name == "inception":
    """ Inception v3 
    Be careful, expects (299,299) sized images and has auxiliary output
    """
    model_ft = models.inception_v3(pretrained=use_pretrained)
    set_parameter_requires_grad(model_ft, feature_extract)
    # Handle the auxilary net
    num_ftrs = model_ft.AuxLogits.fc.in_features
    model_ft.AuxLogits.fc = nn.Linear(num_ftrs, num_classes)
    # Handle the primary net
    num_ftrs = model_ft.fc.in_features
    model_ft.fc = nn.Linear(num_ftrs,num_classes)
    input_size = 299

  else:
    print("Invalid model name, exiting...")
    exit()
  
  return model_ft, input_size

# Initialize the model for this run
model_ft, input_size = initialize_model(model_name, num_classes, feature_extract, use_pretrained=True)

# Print the model we just instantiated
#print(model_ft) 


#準(zhǔn)備數(shù)據(jù)
data_transforms = {
  'train': transforms.Compose([
    transforms.RandomResizedCrop(input_size),
    transforms.RandomHorizontalFlip(),
    transforms.ToTensor(),
    transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
  ]),
  'val': transforms.Compose([
    transforms.Resize(input_size),
    transforms.CenterCrop(input_size),
    transforms.ToTensor(),
    transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
  ]),
}

print("Initializing Datasets and Dataloaders...")


# Create training and validation datasets
image_datasets = {x: datasets.ImageFolder(os.path.join(data_dir, x), data_transforms[x]) for x in ['train', 'val']}
# Create training and validation dataloaders
dataloaders_dict = {x: torch.utils.data.DataLoader(image_datasets[x], batch_size=batch_size, shuffle=True, num_workers=0) for x in ['train', 'val']}

# Detect if we have a GPU available
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
'''
是否加載之前訓(xùn)練過的模型
we='/home/dell/Desktop/dj/inception_050.pth'
model_ft.load_state_dict(torch.load(we))
'''
# Send the model to GPU
model_ft = model_ft.to(device)

params_to_update = model_ft.parameters()
print("Params to learn:")
if feature_extract:
  params_to_update = []
  for name,param in model_ft.named_parameters():
    if param.requires_grad == True:
      params_to_update.append(param)
      print("\t",name)
else:
  for name,param in model_ft.named_parameters():
    if param.requires_grad == True:
      print("\t",name)

# Observe that all parameters are being optimized
optimizer_ft = optim.SGD(params_to_update, lr=0.001, momentum=0.9)
# Decay LR by a factor of 0.1 every 7 epochs
#exp_lr_scheduler = lr_scheduler.StepLR(optimizer_ft, step_size=30, gamma=0.95)

# Setup the loss fxn
criterion = nn.CrossEntropyLoss()

# Train and evaluate
model_ft, hist = train_model(model_ft, dataloaders_dict, criterion, optimizer_ft, num_epochs=num_epochs, is_inception=(model_name=="inception"))

'''
#隨機(jī)初始化時(shí)的訓(xùn)練程序
# Initialize the non-pretrained version of the model used for this run
scratch_model,_ = initialize_model(model_name, num_classes, feature_extract=False, use_pretrained=False)
scratch_model = scratch_model.to(device)
scratch_optimizer = optim.SGD(scratch_model.parameters(), lr=0.001, momentum=0.9)
scratch_criterion = nn.CrossEntropyLoss()
_,scratch_hist = train_model(scratch_model, dataloaders_dict, scratch_criterion, scratch_optimizer, num_epochs=num_epochs, is_inception=(model_name=="inception"))

# Plot the training curves of validation accuracy vs. number 
# of training epochs for the transfer learning method and
# the model trained from scratch
ohist = []
shist = []

ohist = [h.cpu().numpy() for h in hist]
shist = [h.cpu().numpy() for h in scratch_hist]

plt.title("Validation Accuracy vs. Number of Training Epochs")
plt.xlabel("Training Epochs")
plt.ylabel("Validation Accuracy")
plt.plot(range(1,num_epochs+1),ohist,label="Pretrained")
plt.plot(range(1,num_epochs+1),shist,label="Scratch")
plt.ylim((0,1.))
plt.xticks(np.arange(1, num_epochs+1, 1.0))
plt.legend()
plt.show()
'''

以上這篇pytorch之inception_v3的實(shí)現(xiàn)案例就是小編分享給大家的全部內(nèi)容了,希望能給大家一個(gè)參考,也希望大家多多支持腳本之家。

相關(guān)文章

  • Python通過90行代碼搭建一個(gè)音樂搜索工具

    Python通過90行代碼搭建一個(gè)音樂搜索工具

    這篇文章主要介紹了Python通過90行代碼搭建一個(gè)音樂搜索工具,需要的朋友可以參考下
    2015-07-07
  • Python 拷貝對(duì)象(深拷貝deepcopy與淺拷貝copy)

    Python 拷貝對(duì)象(深拷貝deepcopy與淺拷貝copy)

    Python中的對(duì)象之間賦值時(shí)是按引用傳遞的,如果需要拷貝對(duì)象,需要使用標(biāo)準(zhǔn)庫中的copy模塊。
    2008-09-09
  • 解決tensorflow模型參數(shù)保存和加載的問題

    解決tensorflow模型參數(shù)保存和加載的問題

    今天小編就為大家分享一篇解決tensorflow模型參數(shù)保存和加載的問題,具有很好的參考價(jià)值,希望對(duì)大家有所幫助。一起跟隨小編過來看看吧
    2018-07-07
  • 如何使用Python?Matplotlib繪制條形圖

    如何使用Python?Matplotlib繪制條形圖

    當(dāng)我們使用plot方法繪圖時(shí),默認(rèn)繪制的是折線圖,下面這篇文章主要給大家介紹了關(guān)于如何使用Python?Matplotlib繪制條形圖的相關(guān)資料,文中通過實(shí)例代碼介紹的非常詳細(xì),需要的朋友可以參考下
    2022-06-06
  • 在python 中split()使用多符號(hào)分割的例子

    在python 中split()使用多符號(hào)分割的例子

    今天小編就為大家分享一篇在python 中split()使用多符號(hào)分割的例子,具有很好的參考價(jià)值,希望對(duì)大家有所幫助。一起跟隨小編過來看看吧
    2019-07-07
  • python中常見的幾種音頻數(shù)據(jù)讀取、保存方式總結(jié)

    python中常見的幾種音頻數(shù)據(jù)讀取、保存方式總結(jié)

    Python是一種非常適合進(jìn)行音頻處理和音頻分析的語言,因?yàn)樗性S多強(qiáng)大的庫可以使用,下面這篇文章主要給大家介紹了關(guān)于python中常見的幾種音頻數(shù)據(jù)讀取、保存方式,文中通過代碼介紹的非常詳細(xì),需要的朋友可以參考下
    2024-06-06
  • Python安裝Numpy出現(xiàn)異常信息簡單解決辦法

    Python安裝Numpy出現(xiàn)異常信息簡單解決辦法

    在安裝Python的Numpy包時(shí),可能會(huì)遇到路徑警告或包源超時(shí)的問題,首先,如果出現(xiàn)包源超時(shí),可以嘗試更換為國內(nèi)的鏡像源,如清華大學(xué)鏡像源,其次,如果在安裝完成后提示將某個(gè)路徑添加到PATH環(huán)境變量,按照提示操作即可消除異常,需要的朋友可以參考下
    2024-09-09
  • 解決virtualenv -p python3 venv報(bào)錯(cuò)的問題

    解決virtualenv -p python3 venv報(bào)錯(cuò)的問題

    這篇文章主要介紹了解決virtualenv -p python3 venv報(bào)錯(cuò)的問題,具有很好的參考價(jià)值,希望對(duì)大家有所幫助。一起跟隨小編過來看看吧
    2021-02-02
  • Python中pyecharts安裝及安裝失敗的解決方法

    Python中pyecharts安裝及安裝失敗的解決方法

    這篇文章主要介紹了Python中pyecharts安裝及安裝失敗的解決方法,本文給大家介紹的非常詳細(xì),具有一定的參考借鑒價(jià)值,需要的朋友可以參考下
    2020-02-02
  • Python基礎(chǔ)之tkinter圖形化界面學(xué)習(xí)

    Python基礎(chǔ)之tkinter圖形化界面學(xué)習(xí)

    這篇文章主要介紹了Python基礎(chǔ)之tkinter圖形化界面學(xué)習(xí),文中有非常詳細(xì)的代碼示例,對(duì)正在學(xué)習(xí)python基礎(chǔ)的小伙伴們有非常好的幫助,需要的朋友可以參考下
    2021-04-04

最新評(píng)論